Venturi Example

<u>Given</u>: A venturi is to be used to measure a 250 gpm flow of 70°F water in a 4-in ID pipe.

<u>Find</u>: Select a throat diameter that provides $\text{Re}_{d} > 200,000$ in the throat, and determine what differential pressure must be measured.

Water Properties:

- μ = 6.58 × 10⁻⁴ lbm/ft-s = 2.37 lbm/ft-hr
- $\rho = 62.3 \text{ lbm/ft}^3$

Sol'n: $\operatorname{Re}_{d} = \rho V d/\mu$ and $\dot{m} = \rho \cdot Q$, or: $\dot{m} = 62.3 \frac{lbm}{ft^{3}} \times 250 \frac{gal}{min} \times 60 \frac{min}{hr} \times 0.13368 \frac{ft^{3}}{gal}$ $\dot{m} = 125,000 \frac{lbm}{hr}$

Next, want Re in terms of mass flow rate:

$$\dot{\mathbf{m}} = \frac{\rho \cdot \mathbf{V} \cdot \pi \, \mathrm{d}^2}{4} \qquad \mathbf{V} = \frac{4 \, \dot{\mathbf{m}}}{\rho \cdot \pi \cdot \mathrm{d}^2}$$

Putting Re_d in terms of mass flow rate...

$$\operatorname{Re}_{d} = \frac{\rho \cdot \left(\frac{4 \operatorname{\dot{m}}}{\rho \cdot \pi \cdot d^{2}}\right) \cdot d}{\mu} = \frac{4 \operatorname{\dot{m}}}{\pi \cdot d \cdot \mu}$$

Now can find d for various Re_d (at highest mass flow rate): $4 \dot{m}$

$$d = \frac{4 m}{\pi \cdot Re_{d} \cdot \mu}$$

For $Re_d = 200,000$:

$d = \frac{4 \times 125,000 \frac{\text{lbm}}{\text{hr}}}{200,000 \,\pi \times 2.37 \frac{\text{lbm}}{\text{ft} \cdot \text{hr}}} = 0.336 \,\text{ft} = 4.03 \,\text{in}$

Since D = 4.00 in, we need a smaller d and should have no problem with $\text{Re}_{d} > 200,000$. Choose d = 2 inches for convenience.

$$\operatorname{Re}_{d} = \frac{4 \,\dot{m}}{\pi \cdot d \cdot \mu} = \frac{4 \times 125,000 \frac{\text{lbm}}{\text{hr}}}{\pi \cdot \frac{2}{12} \,\text{ft} \times 2.37 \frac{\text{lbm}}{\text{ft} \cdot \text{hr}}} = 403,000$$

Next we rearrange the YMCA Equation:

$$\mathbf{Q} = \mathbf{Y} \cdot \mathbf{M} \cdot \mathbf{C} \cdot \mathbf{A}_2 \cdot \sqrt{\frac{2(\mathbf{P}_1 - \mathbf{P}_2)}{\rho}}$$

Solving for $\Delta P = P_1 - P_2$: $\Delta P = \frac{\rho \cdot Q^2}{2 Y^2 \cdot M^2 \cdot C^2 \cdot A_2^2}$

For incompressible fluid (water), Y = 1.

$$A_2 = \frac{\pi \left(\frac{2}{12} \text{ ft}\right)^2}{4} = 0.02181 \text{ ft}^2$$

Correction factor C can be obtained from the obstruction meter handout or from text Table 10.1 (p. 280).

Use Table 10.1 for a machined entrance, note we have $\beta = d/D = 2$ in/4 in = 0.5, and Re_D = 201,000 (calculation not shown).

 β , D and Re_D > 2 × 10⁵ fall within the given ranges, so the value C = 0.995 applies.

Inserting these values into the equation for ΔP :

Rotameter

- Simple device for liquid and gas flow measurement
- This is a variable area meterthe rotameter uses a tapered tube with ball or float.

- As flow increases, float moves upward until fluid lift balances weight of float.
- Rotameter scale indicates fluid for which it is calibrated. Other fluids need correction.

Typical Rotameters

Shown emailer than actual ei

Rotameter Correction

- Rotameters are calibrated for only one fluid at given T and P (P not important for liquids).
- When the fluid is different or the conditions are different, the rotameter reading must be corrected to obtain the correct flow rate.
- Significant changes in use of rotameter yield loss in accuracy.

Rotameter Correction- Liquids

For liquids, the correction equation is:

$$\frac{Q_{act}}{Q_{gage}} = \left(\frac{\rho_{b} - \rho_{act}}{\rho_{b} - \rho_{gage}}\right)^{1/2} \left(\frac{\rho_{gage}}{\rho_{act}}\right)^{1/2}$$

where Q_{gage} is gage flow rate reading, Q_{act} is corrected (actual) flow rate, ρ is density, subscript "gage" indicates fluid and conditions for which gage was calibrated, subscript "act" indicates actual fluid and conditions measured, and ρ_{b} is the float density.

Rotameter Correction- Gases

The correction equation for gases is:

where Q_{gage} is gage flow rate reading, Q_{act} is corrected flow rate, P is *absolute* pressure, T is *absolute* temperature, M is molecular weight, subscript "gage" refers to conditions for which rotameter was calibrated, and subscript "act" refers to actual measured conditions and fluid.

Spring-Loaded Rotameter

- The conventional rotameter uses the gravitational force, consequently it must be oriented vertically.
- Rotameters should be installed using a level to assure correct vertical orientation.

Rotameters are available that oppose the flow drag force on the bob with a spring force. These can be oriented in any direction, but typically are less accurate.

Spring-Loaded Rotameter

Wet Test Meter

- A positive displacement gas flow meter.
- Meter is water filled. It counts the number of times a fixed water volume is displaced by gas.
- To get flow rate, meter is timed for some number of displaced volumes.
- Gas is exposed to liquid, so corrections must be made for water evaporation into the gas.
- Normally assume gas is *saturated* with water vapor before exiting the meter.

Wet Test Meter Correction

Gas volume is measured at some T and P (T, P also must be measured), but rate is desired at *standard* T, P (standards vary...) Use ideal gas law: The *dry* gas flow rate is desired: $\dot{m} = \frac{P\dot{V}}{RT} = \frac{P}{RT} \cdot Q$

$$\dot{m}_{dry\,gas} = \frac{P_{std}}{RT_{std}} \cdot Q_{std} = \frac{P_{dry,m}}{RT_m} \cdot Q_m$$

Wet Test Meter Correction

Thus, the standard dry gas volumetric flow rate is: $Q_{std} = \frac{P_{dry,m} \cdot T_{std}}{P_{std} \cdot T_m} \cdot Q_m$

Total measured pressure, P_m is the sum of the dry gas partial pressure, $P_{dry,m}$, and H_2O partial pressure, which is P_{sat} at T_m , so:

$$P_{dry,m} = P_m - P_{sat@T_m}$$

Wet Test Meter Correction

Putting this all together, the standard dry gas volumetric flow rate is:

$$\mathbf{Q}_{std} = \frac{\left(\mathbf{P}_{m} - \mathbf{P}_{sat@T_{m}}\right) \cdot \mathbf{T}_{std}}{\mathbf{P}_{std} \cdot \mathbf{T}_{m}} \cdot \mathbf{Q}_{m}$$

Hot Wire Anemometer

- A hot wire anemometer is a probe used to measure local velocity (like a pitot tube).
- It's a small, resistance wire, often platinum or tungsten, held at constant T by electric current.
 - Heat loss from wire is proportional to both $hA\Delta T$ and I^2R , and h is proportional to velocity, so measurement of I can be used to obtain velocity.

Turbine Meters

- A turbine meter is a small turbine inserted in a pipe so that all flow passes over it.
- The blade rotational frequency is sensed as a pulse rate by a magnetic pickup.
- Meter is calibrated so Q = f/K, where f is frequency and K is the flow coefficient.
- Typical K units: pulses/gal, pulses/liter, etc.
- Turbine meters have high accuracy, good transient response, and wide linear range.

Turbine Meter Assembly

Figure 7.4 Turbine meter unit (Figure courtesy of Kent Instruments)

Paddlewheel Meter

"Poor man's" turbine meter- cheaper but less accurate.

Partial insertion in flow.

Water Meter

- Some rate flow meters can integrate volumetric flow over time to get total volume (a "totalizing" meter).
- a water meter gives a positive displacement measurement of total volume of liquid passed through (rather than flow rate).
- Similar meters are used for measuring water usage, gasoline pumped, etc.
- Following is a nutating vane water meter.

Mass Flow Meter/Controller

- A mass flow meter is a gas flow instrument that is relatively insensitive to gas P, ρ and T.
- Based on relation: $\mathbf{q} = \dot{\mathbf{m}} \cdot \mathbf{c}_{p} \cdot \Delta \mathbf{T}$
- The value of c_p is known and relatively constant over a fairly broad T range.
- The value of q is measured as $q = I^2 R$.
- The value of ΔT is measured also, so the only unknown is \dot{m}

Mass Flow Meter

The mass flow meter can be used as feedback to control a modulating valve, thus providing a "mass flow controller."

- Mass flow meter works only on a single gas.
- Mass flow meters provide about $\pm 1\%$ accuracy at rated conditions and cost \$1200 to \$2000.
- The "controller" option adds \sim \$600 to cost.

