Venturi Example

Given: A venturi is to be used to measure a 250 gpm flow of 70 °F water in a 4-in ID pipe.

Find: Select a throat diameter that provides Re_d > 200,000 in the throat, and determine what differential pressure must be measured.

Water Properties:

- $\mu = 6.58 \times 10^{-4}$ lbm/ft-s = 2.37 lbm/ft-hr
- $\rho = 62.3$ lbm/ft³

 ${\bf Sol}'$ n: Re $_{\sf d}$ = ρVd/μ and $_{\dot {\bf m} = {\bm \rho} \cdot {\bf Q}}$, or: gal ft 0.13368 hrmin $\frac{5}{\text{min}} \times 60 - \frac{1}{\text{ln}}$ $\frac{\text{bm}}{\text{ft}^3} \times 250 \frac{\text{gal}}{\text{mir}}$ $\dot{m} = 62.3 \frac{\text{lbm}}{2}$ 3 $\dot{\text{n}} = 62.3 \frac{\text{3}}{\text{g}^3} \times 250 \frac{\text{cm}}{\text{g}^3} \times 60 \frac{\text{m}}{\text{g}^3} \times$

hr $\dot{m} = 125,000$ lbm

Next, want Re in terms of mass flow rate:

$$
\dot{\mathbf{m}} = \frac{\rho \cdot \mathbf{V} \cdot \pi \, \mathrm{d}^2}{4} \qquad \qquad \mathbf{V} = \frac{4 \, \dot{\mathbf{m}}}{\rho \cdot \pi \cdot \mathrm{d}^2}
$$

Putting Re_d in terms of mass flow rate...

$$
\text{Re}_{\text{d}} = \frac{\rho \cdot \left(\frac{4\,\text{m}}{\rho \cdot \pi \cdot \text{d}^2}\right) \cdot \text{d}}{\mu} = \frac{4\,\text{m}}{\pi \cdot \text{d} \cdot \mu}
$$

Now can find d for various Re_d (at highest mass flow rate): Λ

$$
d = \frac{4 \dot{m}}{\pi \cdot Re_d \cdot \mu}
$$

For Re_d = 200,000:

$= 0.336$ ft $= 4.03$ in $\mathrm{ft}\cdot\mathrm{hr}$ lbm $200,000 \pi \times 2.37$ hr $4 \times 125,000 \frac{\text{lbm}}{1}$ d⋅ \times 2.3 / $\frac{1}{\text{ft}}$ × = ${\cal T}$

Since $D = 4.00$ in, we need a smaller d and should have no problem with $\text{Re}_{\text{d}} > 200$,000. Choose $d = 2$ inches for convenience.

$$
Re_{d} = \frac{4 \text{ m}}{\pi \cdot d \cdot \mu} = \frac{4 \times 125,000 \frac{\text{lbm}}{\text{hr}}}{\pi \cdot \frac{2}{12} \text{ft} \times 2.37 \frac{\text{lbm}}{\text{ft} \cdot \text{hr}}} = 403,000
$$

Next we rearrange the YMCA Equation:

$$
Q = Y \cdot M \cdot C \cdot A_2 \cdot \sqrt{\frac{2(P_1 - P_2)}{\rho}}
$$

Solving for $\Delta P = P_1 - P_2$:

$$
\Delta P = \frac{\rho \cdot Q^2}{2 Y^2 \cdot M^2 \cdot C^2 \cdot A_2^2}
$$

For incompressible fluid (water), $Y = 1$.

$$
A_2 = \frac{\pi \left(\frac{2}{12} \text{ft}\right)^2}{4} = 0.02181 \text{ ft}^2
$$

Correction factor C can be obtained from the obstruction meter handout or from text Table 10.1 (p. 280).

Use Table 10.1 for a machined entrance, note we have $\beta = d/D = 2$ in/4 in = 0.5, and Re_D = 201,000 (calculation not shown).

 $\vert \beta$, D and Re_D > 2 × 10⁵ fall within the given ranges, so the value $C = 0.995$ applies.

Inserting these values into the equation for ∆P:

Rotameter

- Simple device for liquid and gas flow measurement
- This is a variable area meterthe rotameter uses a tapered tube with ball or float.

- As flow increases, float moves upward until fluid lift balances weight of float.
- Rotameter scale indicates fluid for which it is calibrated. Other fluids need correction.

Typical Rotameters

Shown emaller than actual ei

Rotameter Correction

- Rotameters are calibrated for only one fluid at given T and P (P not important for liquids).
- When the fluid is different or the conditions are different, the rotameter reading must be corrected to obtain the correct flow rate.
- Significant changes in use of rotameter yield loss in accuracy.

Rotameter Correction- Liquids

For liquids, the correction equation is:

$$
\frac{Q_{\text{act}}}{Q_{\text{gage}}} = \left(\frac{\rho_{\text{b}} - \rho_{\text{act}}}{\rho_{\text{b}} - \rho_{\text{gage}}}\right)^{1/2} \left(\frac{\rho_{\text{gage}}}{\rho_{\text{act}}}\right)^{1/2}
$$

where Q_{gage} is gage flow rate reading, Q_{act} is
corrected (actual) flow rate, ρ is density, subscript "gage" indicates fluid and conditions for which gage was calibrated, subscript "act" indicates actual fluid and conditions measured, and $\rho_{\sf b}$ is the float density.

Rotameter Correction- Gases

The correction equation for gases is:

where Q_{gage} is gage flow rate reading, Q_{act} is corrected flow rate, P is *absolute* pressure, T is absolute temperature, M is molecular weight, subscript "gage" refers to conditions for which rotameter was calibrated, and subscript "act" refers to actual measured conditions and fluid.

Spring-Loaded Rotameter

- The conventional rotameter uses the gravitational force, consequently it must be oriented vertically.
- Rotameters should be installed using a level to assure correct vertical orientation.

Rotameters are available that oppose the flow drag force on the bob with a spring force. These can be oriented in any direction, but typically are less accurate.

Spring-Loaded Rotameter

Wet Test Meter

- A positive displacement gas flow meter.
- Meter is water filled. It counts the number of times a fixed water volume is displaced by gas.
- To get flow rate, meter is timed for some number of displaced volumes.
- Gas is exposed to liquid, so corrections must be made for water evaporation into the gas.
- Normally assume gas is *saturated* with water vapor before exiting the meter.

Wet Test Meter Correction

Gas volume is measured at some T and P (T, P also must be measured), but rate is desired at *standard* T, P (standards vary...) Use ideal gas law: The *dry* gas flow rate is desired: $\frac{\cdot}{\mathsf{RT}}\!\cdot\!\mathsf{Q}$ P RT $\dot{m} = \frac{\dot{p} \dot{V}}{\dot{m}} = \frac{P}{m}$

$$
\dot{m}_{\text{dry gas}} = \frac{P_{\text{std}}}{RT_{\text{std}}} \cdot Q_{\text{std}} = \frac{P_{\text{dry,m}}}{RT_m} \cdot Q_m
$$

Wet Test Meter Correction

Thus, the standard dry gas volumetric flow rate is: m std m dry,m **'** std $_{\text{std}} = \frac{q_{\text{ry,m}} - q_{\text{su}}}{n} \cdot Q$ $P_{\rm std} \cdot T$ $Q_{std} = \frac{P_{dry,m} \cdot T_{std}}{P}$. ⋅**.** =

Total measured pressure, P_m is the sum of the dry gas partial pressure, $P_{dry,m}$, and H_2O partial pressure, which is $\mathsf{P}_{\mathsf{sat}}$ at T_{m} , so:

$$
\mathbf{P}_{\mathsf{dry},m} = \mathbf{P}_m - \mathbf{P}_{\mathit{sat@T}_m}
$$

Wet Test Meter Correction

Putting this all together, the standard dry gas volumetric flow rate is:

$$
Q_{std} = \frac{\left(P_m - P_{\text{sat@T}_m}\right) \cdot T_{std}}{P_{std} \cdot T_m} \cdot Q_m
$$

Hot Wire Anemometer

- A hot wire anemometer is a probe used to measure local velocity (like a pitot tube).
- It's a small, resistance wire, often platinum or tungsten, held at constant T by electric current.
	- Heat loss from wire is proportional to both hA Δ T and I²R, and h is proportional to velocity, so measurement of I can be used to obtain velocity.

Flow perpendicular to wire Hot Wire Construction

Tungsten wre

Streamlined Insulated support containing the electrical connections

Turbine Meters

- A turbine meter is a small turbine inserted in a pipe so that all flow passes over it.
- The blade rotational frequency is sensed as a pulse rate by a magnetic pickup.
- Meter is calibrated so $Q = f/K$, where f is frequency and K is the flow coefficient.
	- Typical K units: pulses/gal, pulses/liter, etc.
	- Turbine meters have high accuracy, good transient response, and wide linear range.

Turbine Meter Assembly

Turbine meter unit (Figure courtesy of Kent Instruments) **Figure 7.4**

Paddlewheel Meter

"Poor man's" turbine meter- cheaper but less accurate.

Partial insertion in flow.

Water Meter

- Some rate flow meters can integrate volumetric flow over time to get total volume (a "totalizing" meter).
- a water meter gives a positive displacement measurement of total volume of liquid passed through (rather than flow rate).
- Similar meters are used for measuring water usage, gasoline pumped, etc.
- Following is a nutating vane water meter.

Mass Flow Meter/Controller

- **A mass flow meter is a gas flow** instrument that is relatively insensitive to gas P, ρ and T.
- Based on relation: $q = m \cdot c$ $_{\mathsf{p}}\cdot \Delta \mathsf{T}$
- The value of c $_{\text{p}}$ is known and relatively constant over a fairly broad T range.
- The value of q is measured as $q = I²R$.
- The value of ΔT is measured also, so the only unknown is m

Mass Flow Meter

The mass flow meter can be used as feedback to control a modulating valve, thus providing a "mass flow controller."

- Mass flow meter works only on a single gas.
- Mass flow meters provide about $\pm 1\%$ accuracy at rated conditions and cost \$1200 to \$2000.
- The "controller" option adds \sim \$600 to cost.

