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 The Diffusivity in Gases experiment uses a Loschmidt diffusion apparatus in order to 
estimate the binary diffusivity of two inert gases, nitrogen and carbon dioxide.  Experimental 
procedure consists of filling an insulated cell with carbon dioxide gas then allowing the gas to 
diffuse into an adjoining cell across a planar interface.  The carbon dioxide gas is then flushed 
from each cell using excess nitrogen into a solid absorbent.  The increase in absorbent mass is 
assumed to be due to absorption of carbon dioxide.  The relative amounts absorbed after each 
cell is flushed are used to estimate the molar fractions in the two cells. 
 
 
DERIVATION OF AN ANALYTICAL SOLUTION TO  
EQUIMOLAR COUNTERDIFFUSION IN AN INSULATED CYLINDER 
 

A Loschmidt diffusion cell is a classic example of the mass diffusion equation applied to 
an insulated cylinder.  The counter diffusion of the two gases is assumed to occur only in one 
dimension and is governed by the differential equation  
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where Dab is the binary diffusion coefficient, XA is the molar fraction of 
species A, and z is the direction of diffusion.  In order to derive a complete, 
analytical solution to this equation, two boundary conditions and an initial 
condition are required.  The diffusion apparatus setup is shown in Figure 1.  
The lower diffusion cell is represented by the lower half of the cylinder, -
L<z<0. The upper cell is shown as the upper half, 0<z<L.  The 
mathematical representation of the physical system remains accurate if the 
boundaries are restated as 0<z<2L (Figure 1).  Insulated conditions at the 
endpoints of the cylinder provide the required boundary conditions.  These 
boundary conditions can be stated as: 
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The initial value condition can be deduced from our experimental approach.  Each cell is flushed 
of all gases except one.  In the case of the lower cell, carbon dioxide, which is denser than air 
and nitrogen, remains.  In the upper cell, nitrogen persists.  The initial function describing molar 
fraction can be stated as: 
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In this system carbon dioxide has been chosen to be species A. 

Figure 1: Loschmidt 
Diffusion Cell 



The differential equation (1) with conditions (2-4) has an analytical solution.  The 
boundary conditions (2-3) are homogenous so the method of Separation of Variables can be 
directly applied.  It is assumed that the solution is a product of solutions, namely 
 ( ), ( ) ( )AX z t z T tφ=  (5) 

This assumed form is substituted into equation (1) to yield: 
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 '' '( ) ( ) ( ) ( )abD z T t z T tφ φ=  (6) 
The functions ( )zφ and ( )T t  can be separated by dividing both sides of equation (6) 
by ( ) ( )abD z T tφ .  The result is 
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Values of z and t are allowed to range over all possible real numbers simultaneously.  Thus, it 
can be concluded that each side of equation (7) equals a constant.  In other words, 
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The choice of the constant –�2 was arbitrary, chosen for its convenience later.  Equation (8) can 
be seen as two equations, 
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Grouping all non-zero terms on the left side of equations (9) and (10), two ODE’s are obtained, 
 '' 2( ) ( ) 0z zφ λ φ+ =  (11) 
 ' 2( ) ( ) 0abT t D T tλ+ =  (12) 
The functions ( )zφ and ( )T t have now been successfully separated from one PDE into two 
ODE’s.   

An accepted form of the solution to equation (12) is 
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The pre-exponential constant C is simply assumed to equal 1 and is discarded. (This is 
acceptable because if the solution where C=1 exists, then any solution where C is some multiple 
of 1 also exists).   

The solution form assumed for equation (11) is 
 ( ) ( ) ( )z Cos z Sin zφ α λ β λ= +  (14) 
The choice of –�2 is now seen as handy in keeping equation (14) tidy. 



The values for � and � are determined by using the boundary conditions.  Substitution of 
equation (5) into conditions (2) and (3) yields 
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The derivative operation is performed on equation (14) to give 
 '( ) ( ) ( )z Sin z Cos zφ αλ λ βλ λ= − +  (17) 
The first boundary condition, equation (15), is substituted into equation (17) 
 '(0) (0) (0) 0 0Sin Cosφ αλ βλ βλ= − + = → =  (18) 
There are two possibilities that satisfy equation (18).  Either � or � is equal to zero.  If � = 0 then 
the time-dependant solution in equation (13) becomes trivial, T(t)=1.  Consequently, it is 
concluded that � = 0.  The other condition, equation (16), is substituted into equation (17) 
 '(2 ) (2 ) (2 ) 0 (2 ) 0L Sin L Cos L Sin Lφ αλ λ βλ λ αλ λ= − + = → − =  (19) 
The cosine term is discarded because � = 0, shown previously.  Equation (19) is satisfied if �, �, 
or the sine term equals zero.  The option � = 0 is unacceptable because it would cause the 
position-dependant solution to be trivial.  The second option, � = 0, was rejected with the first 
boundary condition.  What remains is the equality 
 (2 ) 0Sin Lλ =  (20) 
Equation (20) is valid when the argument 2�L is some multiple of �.  This occurs when 
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This equation establishes the eigenvalues �n which give rise to the eigenfunctions that satisfy 
equation (20).  The term n is the set of integers: 0,1,2,3….,etc.  The constant � is assumed to 
equal 1 in a similar fashion as the pre-exponential constant in the time-dependant solution.  The 
position-dependant solution is 
 ( ) ( )n nz Cos zφ λ=  (22) 
Each value of n gives rise to a solution.  The collection of possible solutions can be collected into 
one function by using an infinite summation 
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Combining equations (13) and (23) the overall solution becomes 
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This solution is in the form of a Fourier series.  This form allows the summation coefficients an 
to be determined.  The initial condition (4) is used to determine these coefficients 
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The overall solution is then 
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This expression gives the molar fraction at a specific point in space and time.  An average molar 
fraction in the lower cell can be expressed as: 
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The sine term contains the argument 2nL nλ π=  which is a multiple of �/2 on odd values of n 
and a multiple of � on even values.  Therefore, the even summation terms in equation (27) equal 
zero.  In order to discard them, a change in summation index is required.  Since only the odd 
terms are desired, i.e. the 2k+1 terms, any term n is replaced by 2k+1 and the starting index 
value becomes k=0.  The expression for molar fraction in the lower cell then is 
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For the upper cell, the expression for average molar fraction is identical except the “+” after the 
“1/2” term is replaced with a “-“ sign. 

A more general description of the initial molar fractions in the cells doesn’t assume pure 
gases in the cells; the initial condition (Eq (4)) becomes: 
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where the lower and upper cell molar fractions of carbon dioxide are xL,0 and xU,0, respectively. 
Since the boundary conditions remain homogenous the method of Separation of Variables can be 
used in a similar manner as applied to the previous initial condition.  The overall solution is: 
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Using this result, the average molar fraction in each cell is given by: 
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MODELING OF THE CELL FLUSHING MECHANISM 
 

The amount of time necessary to flush a diffusion cell of a specified percentage of carbon 
dioxide initially present depends on the molar fraction of CO2 in the gas exiting the cell being 
flushed as a function of time.  In mathematical terms, 
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where the desired percentage is �, the initial overall molar fraction of species A is oAX , , and 
)(tX o is the molar fraction of species A in the exiting gas.  The purpose of this section is to 

derive an expression for )(tX o .  Differential methods differ in the chosen control volume. 



METHOD  #1:  CONTROL VOLUME IS THE ENTIRE DIFFUSION CELL 
 

If the entire diffusion cell is chosen as the control volume, then imagine a box drawn 
around the cell.  The change in the amount of carbon dioxide in the cell equals the inflow MIN 
minus the outflow MOUT of carbon dioxide.  In differential form 
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where MA,C is the amount of CO2 in the cell.  Assuming the gases act ideally, the masses of 
carbon dioxide equal 
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the terms are 
MWA = molecular weight of species A (CO2) 
P = absolute pressure 
VT = cell volume 
VF = volumetric flow rate of flushing stream 
XA = average molar fraction of species A in cell 
XA,IN = molar fraction of species A in inlet stream 
XA,OUT = molar fraction of species A in outlet stream 
R = ideal gas constant 
T = absolute temperature 

If the pressures and temperatures of the cell and both streams are equal and the flushing flow rate 
is constant then equations (35-37) can be used to reduce equation (34) to: 
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In this experiment the flushing gas is pure nitrogen.  Therefore equation (38) simplifies to 
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If it assumed that perfect mixing occurs during the flushing process then the exiting gas has the 
same molar fraction of species A as the entire cell.  This is stated as 

AOUTA XX =,                                                    (40) 
Substitution of equation (40) into equation (39) produces the differential equation 
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An accepted solution to equation (41) is 
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Figure 2: Comparison of Flushing Data to Model #1  
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Experimental data of amount of CO2 
flushed versus elapsed flushing time is 
graphed in Figure 2.  The amount of 
CO2 flushed as predicted by equation 
(42) is also plotted.  Comparison of the 
model predictions to the experimental 
data indicates the model to be 
inaccurate.  It is likely that assumption 
(40) is invalid. 

 
 
METHOD  #2:  CONTROL VOLUME IS AN INFINITESIMAL VOLUME 
 
 This method uses a disk of area AC and infinitesimal thickness �z.  In this method, 
nitrogen will be chosen as species A. The accumulation in the control volume is 
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with overall concentration of species A as CA.  The flow of species A into and out of the control 
volume are. Respectively, 
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where DAB is the binary diffusivity and XA,i is the molar fraction of species A in stream i.  
Combining equations (43-45) in a mass balance produces 
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If it assumed that the gases behave ideally, the pressures and temperatures of all streams are 
equal, and the flushing flow rate is constant, then equation (46) becomes 
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Dividing both sides of equation (47) by AC�z results in 
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As �z�0 equation (48) becomes the partial differential equation 
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Solution of this PDE requires two boundary conditions and an initial condition.  If it is 
assumed that the exiting gas has the same molar fraction as the infinitesimal disk of gas at the 
exit then the change in molar fraction at the exit is zero.  In symbolic terms, 
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At the cell entrance the inlet gas is assumed to be pure nitrogen (XA = 1).  The change in molar 
fraction at the entrance is the difference between the inlet gas and the molar fraction at the 
entrance at that point in time.  
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These boundary conditions are classified as Robin boundary conditions.  If flushing occurs soon 
enough after diffusion between the cells is stopped then the initial condition is given by 

   )(1)0,( 2 zXzX ACOA −=                                  (52) 
where XACO2(z) is the expression given in equation (27).  Conditions (50-52) cause the solution to 
equation (49) to be a series of eigenfunctions with eigenvalues that are solutions to a 
transcendental function.  Consequently, the simplest solution method is numerical.  Predictions 
of this model in comparison to experimental flushing data is plotted in Figure 3.  This model 
appears to agree with experimental data quite well.  

Figure 3: Comparison of Flushing Models and 
Experimental Data 
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ABSORPTION CONSIDERATIONS 
 

A final item to consider is the ability of the absorbent to adequately absorb the flushed 
gas.  A comparison of absorption versus time for two different flushing flow rates (all other 
factors being equal) is shown in Figure 4.  Apparently, as the flushing rate increases from 0.25 
SCFH to 0.50 SCFH the absorption 
mechanism becomes nonlinear.  
Consequently, this experiment is 
conducted at flushing rates of 0.25 
SCFH or less.  

Figure 4: Comparison of Absorption at 
Different Flushing Rates 


