Chemical Engineering 374

Fluid Mechanics Fall 2009

NonNewtonian Fluids

Non-Newtonian Fluids

Bingham Plastic

- 3D elastic structures.
- Resists small shear, but structure "breaks apart" with large shear.
- Then τ is ~ linear with du/dx
- Coal slurries, grain slurries, sewage sludge.
- Larger particles → weak solid structure → breaks

Pseudoplastic

- Most common
- Dissolved or dispersed particles, like dissolved long chain molecules.
- Have a random orientation in the fluid at rest, but line up when the fluid is sheared.
 - τ decreases with strain rate
 - μ drops as molecules align
- Polymer melts, paper pulp suspensions, pigment suspensions, hair gel.
- "Shear-Thinning"

Dilitant

- Rare
- Slurries of solid particles with barely enough liquid to keep apart.
- At low strain rates, the fluid can lubricate solids; at high strain rates, this lubrication breaks down.
- μ increases with strain $\rightarrow \tau$ increases.
- Corn starch.
- "Shear thickening".

Non-Newtonian

Time dependence

- Thixotropic
 - Slurries/solutions of polymers
 - Many known fluids
 - Most are pseudoplastic
 - Alignable particles/molecules with weak bonds (H-bonding)
 - Rheopectic
 - Rare
 - Fewer known examples
 - Usually fluids only show this behavior under mild shearing
 - Changes occur within the first
 60 sec. for most processes.
- THOUNDED HUNDED HUNDED
- Hard to describe

Outline

Last Class: Types and Properties of non-Newtonian Fluids with Examples

- Pipe flows for non-Newtonian fluids
- Velocity profile / flow rate
- Pressure drop
 - Friction factor
 - Pump power
- Rheological Parameters

Power Law Fluids

8

Power Law Fluids

- Governing equations are "correct" in terms of $\boldsymbol{\tau}$
 - Expression for τ is the model.
 - Called a "constitutive relation"
 - Also have these for mass and heat fluxes in heat and mass transfer.

da

- Newtonian flow

$$\tau = -\mu \frac{dv}{dy}$$

- For dilitant and pseudoplastic fluids (most common)—*Power Law*

$$\tau = K \left(-\frac{dv}{dy} \right)^n \qquad \begin{array}{l} n > 1 \rightarrow \text{Dilitant} \\ n < 1 \rightarrow \text{Psuedoplastic} \\ n = 1, \text{ K} = \mu \rightarrow \text{Newtonian} \end{array}$$

- K, n are empirical constants
- Many other forms
 - Simpler ones have 3 parameters and give a better fit, but are more complex than power law form.
 - See Handout of Book Chapter on Blackboard.

Laminar Pipe Flow

Force Balance: Pressure, stress

$$(P_x - P_{x+\Delta x})(2\pi r\Delta r) + (2\pi\Delta xr)\tau_r - (2\pi\Delta x)(r+\Delta r)\tau_{r+\Delta r} = 0$$

Divide $2\pi\Delta r\Delta x$

$$r\frac{P_x - P_{x+\Delta x}}{\Delta x} + \frac{r\tau_r - (r+\Delta r)\tau_{r+\Delta r}}{\Delta r} = 0$$

Limit Δx , $\Delta r \rightarrow 0$

$$-\frac{dP}{dx} = \frac{1}{r}\frac{d(r\tau)}{dr} = C$$

ate variables and integrate with τ =0 at r=0 $\tau = -\frac{r}{2}\frac{dP}{dx}$

Non-Newtonian Pipe Flow

- Most non-Newtonian flows are laminar.
- Key results:
 - Force balance:
 - Power law constitutive relation
 - Integrate with B.C. v=0 at r=R

$$\tau = -\frac{r}{2} \frac{dP}{dx}$$

$$\tau = K \left(-\frac{dv}{dr}\right)^n$$

$$v = \left(-\frac{1}{2K} \frac{dP}{dx}\right)^{1/n} \left(\frac{n}{n+1}\right) \left(R^{\frac{n+1}{n}} - r^{\frac{n+1}{n}}\right)$$

$$Q = \frac{\pi n D^3}{8(3n+1)} \left(-\frac{D}{4K}\frac{dP}{dx}\right)^{1/n} \qquad V_{avg} = \frac{nD}{2(3n+1)} \left(-\frac{D}{4K}\frac{dP}{dx}\right)^{1/n}$$

Kinetic Energy Correction Factor:

$$=\frac{3(3n+1)^2)}{(5n+3)(2n+1)}$$

- Momentum Flux Correction Factor:

$$\beta = \frac{3n+1}{2n+1}$$

 α

Pressure Drop

- Again $\tau = -\frac{r}{2}\frac{dP}{dx} \longrightarrow \tau_w = -\frac{R}{2}\frac{dP}{dx}$
- Recall definition of friction factor: $f = \frac{8\tau_w}{\rho V_{ava}^2}$
- Insert τ_w , with dP/dx = Δ P/L, and rearrange:

$$\frac{\Delta P}{\rho} = -F = -\frac{fLV_{avg}^2}{2D}$$

- This gives the same pressure drop equation as for laminar flow
 - (What about turbulent flow)

- Pump power is just
$$\dot{W} = -Q\Delta P = -\dot{m}\frac{\Delta P}{\rho} = \dot{m}F$$

- f for non-Newtonian fluids:
 - Laminar pipe flow: $V_{avg} = \frac{nD}{4(3n+1)} \left(-\frac{D}{4K}\frac{dP}{dx}\right)^{1/n}$
 - Solve for dP/dx = Δ P/L and insert into

$$\frac{\Delta P}{\rho} = -F = -\frac{fLV_{avg}^2}{2D}$$

- Solve result for f:

$$f = \frac{8K}{\rho V_{avg}^2} \left(\frac{2(3n+1)V_{avg}}{nD}\right)^n$$

Turbulent Flow

- Define the friction factor as before:
 - (Laminar or Turbulent)

$$f = \frac{8\tau_w}{\rho V_{avg}^2} = \frac{\Delta P D/L}{\frac{1}{2}\rho V_{avg}^2}$$

- For turbulent flow we had $f = f(Re, \epsilon/D)$ from dimensional analysis.
- Question: Will this work for non-Newtonian Flow?
- Question: What is the Reynolds number?
 - No clear definition of Re since there μ is not constant (depends on the strain rate dv/dr, which depends on V_{avg}
- Use the same definition as the laminar friction factor: Re=64/f

$$f = \frac{8K}{\rho V_{avg}^2} \left(\frac{2(3n+1)V_{avg}}{nD}\right)^n \longrightarrow Re = \frac{8\rho V_{avg}^2}{K} \left(\frac{nD}{2(3n+1)V_{avg}}\right)^n$$

- (Poiseuille's Law)

- (Definition based on laminar Newtonian, but used for all regimes)
- Plot friction factor versus Re as for Newtonian flows

Non-Newtonian Friction Factor (Power Law)

14

Rheological Parameters (power law)

- Analyse a non-Newtonian fluid from data: Compute n, K given data ٠
- **Measure** D, Q, dP/dx $\rightarrow \tau_{w}$, v_{avg}. ٠
- Now: $\tau = K \left(-\frac{dv}{dr}\right)^n \longrightarrow \ln(\tau_w) = \ln(K) + n \ln(-dv/dr)_w$
- With $\left(-\frac{dv}{dr}\right) = \frac{2(3n+1)V_{avg}}{nD}$ computed from our v(r) solution. •
- A plot of $ln(t_w)$ versus $ln(-dv/dr)_w$ is linear with slope n, but to get $(-dv/dr)_w$ we need n. ٠
- •

Instead: **Define** $\xi = \frac{8V_{avg}}{D}$ (happens to be (-dv/dr)_w for Newtonian flow)

- We know this up front.
- Now $\left(-\frac{dv}{dr}\right) = \xi \frac{(3+1/n)}{4}$
- Now insert this into $\ln(\tau_w) = \ln(K) + n \ln(-dv/dr)_w$ to get ٠

$$\ln(\tau_w) = n \ln(\xi) + [n \ln((3 + 1/n)/4) + \ln(K)]$$

- Plot $ln(\tau_w)$ versus $ln(\xi)$, which has slope n.
- The term in brackets is the intercept. Once n is found, compute K from the intercept (or analytically).
- Units on K are kg*sⁿ⁻²/m from definition of power-law stress.

Once n is found as slope of $ln(\tau_w)$ versus $ln(\xi)$, K is computed analytically as ٠

$$K = \frac{\tau_w}{\left(\frac{\xi}{4}(3+1/n)\right)^n}$$

Example

- Given:
 - Diameter
 - Pressure Drop
 - Flow Rate
- Compute:
 - K, n
 - Re
 - Power through a given pipe

16

