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Chemical Engineering 374 
 

Fluid Mechanics 
 

NonNewtonian Fluids 

Outline 

•  Types and properties of non-Newtonian 
Fluids 

•  Pipe flows for non-Newtonian fluids 
•  Velocity profile / flow rate 
•  Pressure drop 

– Friction factor  
– Pump power 

•  Rheological Parameters 
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Power Law Fluids 
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Non-Newtonian Fluids 
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Newtonian Bingham Plastic Pseudoplastic Dilitant 

τ=µ*dv/dy	

 τ=µ*dv/dy + τy	

 τ=κ*|dv/dy|n	



Bingham Plastic 

•  3D elastic structures.  Weak solid 
structures that must be broken 

•  Resists small shear, but structure 
“breaks apart” with large shear. 

•  Then τ is ~ linear with du/dx 
•  Some slurries (coal, grain slurries), 

sewage sludge. 
–  Toothpaste (no drip) 

•  Larger particles à weak solid 
structure à breaks 
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Bingham Plastic 

τ=µ*dv/dy + τy	
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Pseudoplastic 

•  Most common 
•  Dissolved or dispersed particles, like 

dissolved long chain molecules. 
•  Have a random orientation in the fluid 

at rest, but line up when the fluid is 
sheared. 
–  τ decreases with strain rate 
–  µ drops as molecules align 

•  Polymer melts, paper pulp 
suspensions, pigment suspensions, 
hair gel, blood, muds, most slurries 

•  “Shear-Thinning” 
–  motor oil 
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Pseudoplastic 

τ=K*(-dv/dy)n	



Dilitant 

•  Rare 
•  Slurries of solid particles with 

barely enough liquid to keep 
apart. (corn starch, water 
squeezed out at high shear) 

•  At low strain rates, the fluid can 
lubricate solids; at high strain 
rates, this lubrication breaks 
down. 

•  µ increases with strain à τ 
increases. 

•  “Shear thickening”. 
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Dilitant 

τ=K*(-dv/dy)n	
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Non-Newtonian 
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Time dependence 

•  Thixotropic 
–  Slurries/solutions of polymers 
–  Many known fluids 
–  Most are pseudoplastic 
–  Alignable particles/molecules with 

weak bonds (H-bonding) 
–  Paint 
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•  Rheopectic 
–  Rare 
–  Fewer known examples 
–  Usually fluids only show this behavior 

under mild shearing 
 

τ	



time 

τ	



time 

•  Changes occur within the first 60 sec. 
for most processes. 

•  Hard to describe 
•  Viscoelastic 
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Power Law Fluids 

•  Governing equations are “correct” in terms of τ	


–  Expression for τ is the model. 
–  Called a “constitutive relation” 

•  Also have these for mass and heat fluxes in heat and mass transfer. 

–  Newtonian flow 

–  For dilitant and pseudoplastic fluids (most common)—Power Law 

 
•  K, n are empirical constants 

–  Many other forms 
•  Simpler ones have 3 parameters and give a better fit, but are more complex 

than power law form.   
–  See Handout of Book Chapter on Webpage. 
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Laminar Pipe Flow 
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Non-Newtonian Pipe Flow 

•  Most non-Newtonian flows are laminar. 
•  Key results: (remember, Q is just volumetric flow rate-Vdot) 

–  Force balance: 
–  Power law constitutive relation 
–  Integrate with B.C. v=0 at r=R 

–  Q = Avavg 
•  Q is volumetric flow rate 

–  Kinetic Energy Correction Factor: 

–  Momentum Flux Correction Factor: 
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Pressure Drop—Laminar Flow 
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Turbulent Flow 

•  Define the friction factor as before: 
–  (Laminar or Turbulent) 

•  For turbulent flow we had f = f(Re, ε/D) from dimensional analysis. 

•  Question: Will this work for non-Newtonian Flow? 

•  Question: What is the Reynolds number? 
–  No clear definition of Re since µ is not constant (depends on the strain rate dv/dr, 

which depends on Vavg ) 

•  Use the same definition as the laminar friction factor: Re=64/f 

–  (Definition based on laminar Newtonian, but used for all regimes) 

•  Plot friction factor versus Re as for Newtonian flows, using the red 
definition of Re.  
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Non-Newtonian Friction Factor (Power Law) 
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Rheological Parameters (power law) 
•  Problem: Non-Newtonian fluid has:  

–  How to find K, and n for a given fluid? 

•  You need to measure something (what?) 

•  Try a pipe flow 
–  D, Q, dP/dx 

•  Here’s what we know: 

•  D, Q, dP/dx à Vavg, τw.  

•  Then relate these to K, n:  
–  Compute (-dv/dr)w from v(r)   

15 

� = K

✓
�dv

dr

◆n

v =
✓
� 1

2K

dP

dx

◆1/n ✓
n

n + 1

◆ ⇣
R

n+1
n � r

n+1
n

⌘

Q =
�nD3

8(3n + 1)

✓
� D

4K

dP

dx

◆1/n

� = K

✓
�dv

dr

◆n

Vavg =
nD

2(3n + 1)

✓
� D

4K

dP

dx

◆1/n

� = �r

2
dP

dx

�w = �R

2
dP

dx

�w = K

✓
�dv

dr

◆n

w

�w = K

✓
�dv

dr

◆n

w

Rheological Parameters (power law) 

•  From v(r), we get: 
•  Now 
•  So a plot of ln(τw) versus ln(-dv/dr)w is linear with slope n, and 

intercept ln(K). 
•  But, note that (-dv/dr)w involves n, which is unknown à what to do? 
•  Just rearrange: 

•  Now, a plot of ln(τw) versus ln(Vavg) is linear with slope n. 
•  Once n is known, K can be computed from the intercept (term in {}), 

or just compute it analytically from                    and                                
which give  
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Recap 

•  To compute K, n for a non-Newtonian fluid 
•  Measure Q, D, dP/dx 
•  Compute Vavg from Q and D (area), that is, Q=A*Vavg 

•  Compute τw from 
•  Plot ln(τw) versus ln(Vavg)     
•  Fit a line to the data (the linear part of the data) 
•  The slope is n 
•  K is computed from the intercept, or from 

•  Note, the units on K are (kg*sn-2/m) 
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Example 

•  Given: 
–  Diameter 
–  Pressure Drop 
–  Flow Rate 

•  Compute: 
–  K, n 
–  Re 
–  Power through a 

given pipe is as 
usual, Q*ΔP  
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Note, here xi = 8*Vavg/D, and instead of plotting ln(tauw) versus ln(Vavg),  
I’m plotting ln(tauw) versus ln(xi).  The approach is the same, but the intercept has a different formula 
for getting K.  By the way, xi = 8*Vavg/D is (-dv/dr)w for Newtonian fluids, hence that choice here.  
  


