Chemical Engineering 374

Fluid Mechanics

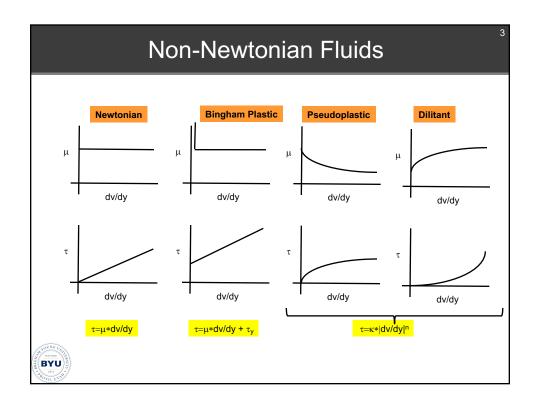
NonNewtonian Fluids

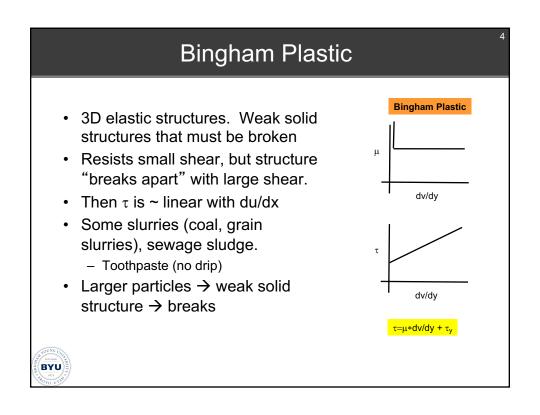
1

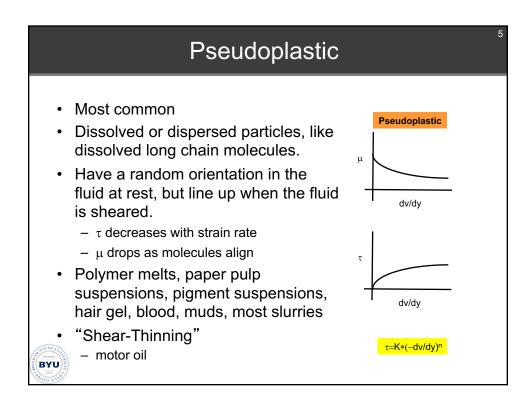
Outline

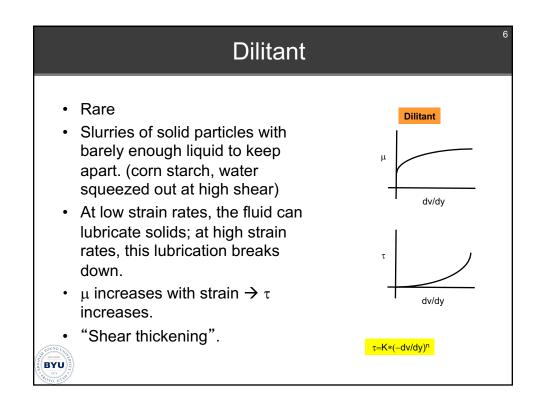
- Types and properties of non-Newtonian Fluids
- Pipe flows for non-Newtonian fluids
- Velocity profile / flow rate
- Pressure drop
 - Friction factor
 - Pump power
- Rheological Parameters

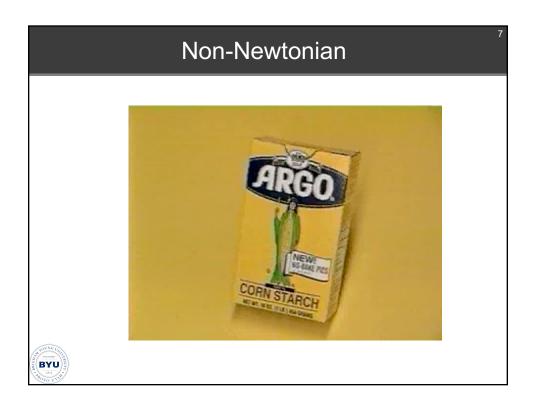
Power Law Fluids











Time dependence Thixotropic Slurries/solutions of polymers - Many known fluids Most are pseudoplastic - Alignable particles/molecules with weak bonds (H-bonding) time - Paint Rheopectic - Rare Fewer known examples - Usually fluids only show this behavior under mild shearing Changes occur within the first 60 sec. for most processes. Hard to describe Viscoelastic BYU

Power Law Fluids

- Governing equations are "correct" in terms of τ
 - Expression for τ is the model.
 - Called a "constitutive relation"
 - · Also have these for mass and heat fluxes in heat and mass transfer.
 - Newtonian flow

$$\tau = -\mu \frac{dv}{dy}$$

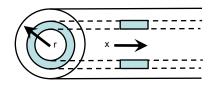
- For dilitant and pseudoplastic fluids (most common)—Power Law

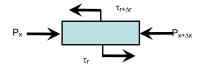
$$\tau = K \left(-\frac{dv}{dy} \right)^n \\ \text{n>1} \Rightarrow \text{Dilitant} \\ \text{n<1} \Rightarrow \text{Psuedoplastic} \\ \text{n=1, K=μ} \Rightarrow \text{Newtonian}$$

- K, n are empirical constants
- Many other forms
 - Simpler ones have 3 parameters and give a better fit, but are more complex than power law form.



Laminar Pipe Flow





Force Balance: Pressure, stress

$$(P_x - P_{x+\Delta x})(2\pi r \Delta r) + (2\pi \Delta x r)\tau_r - (2\pi \Delta x)(r + \Delta r)\tau_{r+\Delta r} = 0$$

Divide 2πΔrΔx

$$r\frac{P_x - P_{x+\Delta x}}{\Delta x} + \frac{r\tau_r - (r + \Delta r)\tau_{r+\Delta r}}{\Delta r} = 0$$

Limit Δx , $\Delta r \rightarrow 0$

$$-\frac{dP}{dx} = \frac{1}{r}\frac{d(r\tau)}{dr} = C$$

 $-\frac{dP}{dx}=\frac{1}{r}\frac{d(r\tau)}{dr}=C$ Separate variables and integrate with τ =0 at r=0 $\tau=-\frac{r}{2}\frac{dP}{dx}$

Non-Newtonian Pipe Flow

- Most non-Newtonian flows are laminar. Key results: (remember, Q is just volumetric flow rate-Vdot)
 - Force balance:
 - $$\begin{split} \tau &= -\frac{r}{2}\frac{dP}{dx} \\ \tau &= K\left(-\frac{dv}{dr}\right)^n \\ v &= \left(-\frac{1}{2K}\frac{dP}{dx}\right)^{1/n} \left(\frac{n}{n+1}\right) \left(R^{\frac{n+1}{n}} r^{\frac{n+1}{n}}\right) \end{split}$$
 Power law constitutive relationIntegrate with B.C. v=0 at r=R
 - $\begin{array}{ccc} \textbf{-} & \textbf{Q} = \textbf{A} \textbf{V}_{\text{avg}} \\ & \bullet & \textbf{Q} \text{ is volumetric flow rate} \end{array} \quad Q = \frac{\pi n D^3}{8(3n+1)} \left(-\frac{D}{4K} \frac{dP}{dx} \right)^{1/n} \quad V_{avg} = \frac{nD}{2(3n+1)} \left(-\frac{D}{4K} \frac{dP}{dx} \right)^{1/n} \end{array}$
 - Kinetic Energy Correction Factor: $\alpha = \frac{3(3n+1)^2}{(5n+3)(2n+1)}$
 - Momentum Flux Correction Factor: $\beta = \frac{3n+1}{2n+1}$

Pressure Drop—Laminar Flow

 $f = \frac{4\tau_w}{\frac{1}{2}\rho v_{avg}^2} \qquad \boxed{1}$

Force Balance $\frac{dP}{dx} = -\frac{2\tau_w}{R}$

 $V_{avg} = -\frac{1}{\pi R^2} \int_A v(r) dA$

Newtonian

$$v = -\frac{R^2}{4\mu} \left(\frac{dP}{dx} \right) \left(1 - \frac{r^2}{R^2} \right)$$

$$V_{avg} = -\frac{R^2}{8\mu} \left(\frac{dP}{dx} \right)$$

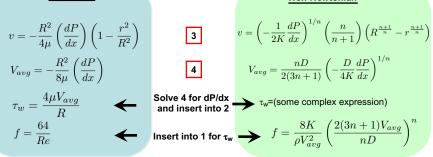
$$\tau_w = \frac{4\mu V_{avg}}{R}$$

$$f = \frac{64}{Re}$$

$$v = \left(-\frac{1}{2K}\frac{dP}{dx}\right)^{1/n} \left(\frac{n}{n+1}\right) \left(R^{\frac{n+1}{n}} - r^{\frac{n+1}{n}}\right)$$

$$V_{avg} = \frac{nD}{2(2r+1)} \left(-\frac{D}{4V} \frac{dP}{dr} \right)^{1/r}$$

lve 4 for dP/dx
$$\tau_w$$
=(some complex expression)



Turbulent Flow

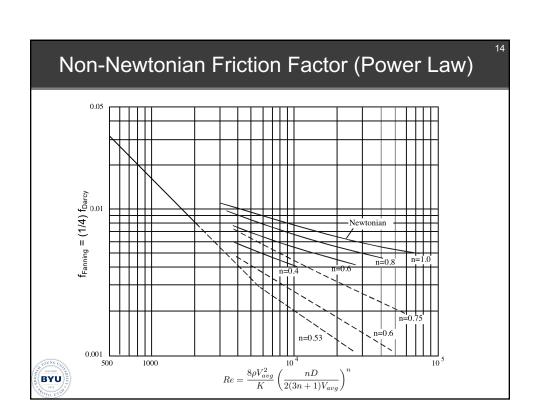
13

- Define the friction factor as before: $f = \frac{8\tau_w}{\rho V_{avg}^2} = \frac{\Delta PD/L}{\frac{1}{2}\rho V_{avg}^2}$
 - (Laminar or Turbulent)
- For turbulent flow we had $f = f(Re, \varepsilon/D)$ from dimensional analysis.
- · Question: Will this work for non-Newtonian Flow?
- · Question: What is the Reynolds number?
 - No clear definition of Re since μ is not constant (depends on the strain rate dv/dr, which depends on V_{avg})
- · Use the same definition as the laminar friction factor: Re=64/f

$$f = \frac{8K}{\rho V_{avg}^2} \left(\frac{2(3n+1)V_{avg}}{nD}\right)^n \longrightarrow \boxed{Re = \frac{8\rho V_{avg}^2}{K} \left(\frac{nD}{2(3n+1)V_{avg}}\right)^n}$$

- (Definition based on laminar Newtonian, but used for all regimes)

• Plot friction factor versus Re as for Newtonian flows, using the red definition of Re.



Rheological Parameters (power law)

- **Problem:** Non-Newtonian fluid has: $\tau = K \left(-\frac{dv}{dr} \right)^n$
 - How to find K, and n for a given fluid?
- You need to measure something (what?)
- · Try a pipe flow
 - D, Q, dP/dx
- Here's what we know:

$$\tau = K \left(-\frac{dv}{dr}\right)^n \qquad \qquad v = \left(-\frac{1}{2K}\frac{dP}{dx}\right)^{1/n} \left(\frac{n}{n+1}\right) \left(R^{\frac{n+1}{n}} - r^{\frac{n+1}{n}}\right)$$

$$\tau = -\frac{r}{2}\frac{dP}{dx} \qquad \qquad Q = \frac{\pi nD^3}{8(3n+1)} \left(-\frac{D}{4K}\frac{dP}{dx}\right)^{1/n}$$

$$\tau_w = K \left(-\frac{dv}{dr}\right)^n_w \qquad \qquad V_{avg} = \frac{nD}{2(3n+1)} \left(-\frac{D}{4K}\frac{dP}{dx}\right)^{1/n}$$

- D, Q, dP/dx \rightarrow V_{avg}, τ_w .
- Then relate these to K, n: $\tau_w = K \left(-\frac{dv}{dr} \right)_w^n$

Compute (-dv/dr)_w from v(r)

Rheological Parameters (power law)

- From v(r), we get: $\left(-\frac{dv}{dr}\right)_w = \frac{2(3n+1)V_{avg}}{nD}$
- Now $\tau = K \left(-\frac{dv}{dr}\right)^n \longrightarrow \ln(\tau_w) = \ln(K) + n \ln(-dv/dr)_w$
- So a plot of $\ln(\hat{\tau_w})$ versus $\ln(-dv/dr)_w$ is linear with slope n, and intercept $\ln(K)$.
- But, note that (-dv/dr)_w involves n, which is unknown → what to do?
- · Just rearrange:

$$\begin{split} &\ln(\tau_w) = \ln(K) + n \ln(2(3n+1)V_{avg}/nD) \\ &\ln(\tau_w) = n \ln(V_{avg}/D) + [\ln(K) + n \ln(2(3n+1)/n)] \end{split}$$

- Now, a plot of $ln(\tau_w)$ versus $ln(V_{avq}/D)$ is linear with slope n.
- Once n is known, K can be computed from the intercept (term in []), or just compute it analytically from $_{\tau}=K\left(-\frac{dv}{dr}\right)^{n}$ and $\left(-\frac{dv}{dr}\right)_{w}=\frac{2(3n+1)V_{avg}}{nD}$ which give

$$K = \frac{\tau_w}{(2(3n+1)V_{avg}/nD)^n}$$

Recap

1

- · To compute K, n for a non-Newtonian fluid
- Measure Q, D, dP/dx
- Compute V_{avg} from Q and D (area), that is, Q=A*V_{avg}
- Compute $\tau_{\rm w}$ from $au_{\rm w} = -rac{R}{2}rac{dP}{dx}$
- Plot $ln(\tau_w)$ versus $ln(V_{avg}/D)$
- Fit a line to the data (the linear part of the data)
- · The slope is n
- K is computed from the intercept I: $K = \exp[I n \ln(2(3n+1)/n)]$

or from
$$K = \frac{\tau_w}{(2(3n+1)V_{avg}/nD)^n}$$

Note, the units on K are (kg*sⁿ⁻²/m)

