
Experimental Design for Minimizing 
Parameter Uncertainty in the Physical 
and Engineering Sciences 

Motivation 
The physical and engineering sciences differ from much of life and social sciences in that the equations 

commonly used in the former often come from theoretical analyses of the system being observed. By 

contrast, life and social science relationships commonly are so complex that they frequently are 

modeled by statistically linear models, usually polynomials, with little theoretical motivation for the 

form of the equation. The theoretically derived expressions frequently involve parameters in nonlinear 

ways. This discussion pertains to both linear and nonlinear equations, but it results in a relatively simple 

and general design for linear systems and a potentially more complex design for nonlinear systems. The 

advantage of such a design is illustrated in the following example, which uses the function  𝑦 =

𝛽[1 − exp(−𝛾𝑥)] as a fitting function (Figure 1), which describes species formation through radioactive 

decay or other first-order reactions among many other things. 

 

Figure 1 Plot of 𝒚 = 𝜷[𝟏 − 𝐞𝐱𝐩(−𝜸𝒙)] over the range of significant variation in its parameters. 

The advantages of rigorously designed experiments compared to casual design appear graphically in 

Figure 2 in terms of parameter confidence regions. In all cases illustrated, ten experimental data points 

are used to estimate the equation’s parameters with equal error in all measurements and the true value 

of both parameters is 1. In the first case, the data points are evenly spaced in the region where 𝑦 is 
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changing the fastest (𝑥 varying from 0 to 1), resulting in the indicated parameter estimates and 

confidence intervals. If the experimental 𝑥 values from 1 to 4.6, the confidence intervals shrink 

considerably, as indicated in the bottom left and top right. If five replicated data at each of two 

optimally chosen locations (𝑥 appx. equal to 1 and 4.6) are used, the confidence intervals shrink further. 

Uniformly spaced experimental data collected 

in region of most rapid change in results 

 

Uniformly spaced experimental data over 

broader range 

 

Uniformly spaced experimental data over 

broader range (magnified) 

 

Optimally spaced experimental data (replicated 

points near upper and lower limits) 

 
Figure 2 Confidence intervals (95% and 99%) for parameters as estimated from three experimental designs, all with same 
number of data points and same error but with data from differing values of independent variable in the equation 𝒚 =
𝜷[𝟏 − 𝐞𝐱𝐩(−𝜸𝒙)] as follows: equally spaced points over the region of most rapid change (top left), replicated points at two 
values of independent variable (top right), same as top right but at expanded scale (bottom left), at two optimized points 
(bottom right).  



The experimental design that leads to the least uncertainty in parameter values for a given number of 

measurements and a fixed amount of error in the measurements can be found by the following general 

procedure. 

1. The data will be collected at a number of values of the independent variable as there are 

parameters and that additional data points will be replicated at these values. That is, if there are 

two parameters, all of the data will be collected at one of two values of the independent 

variable.  

2. Form an F-matrix from the model equation by taking its derivative with respect to the 

parameters and evaluating it at each value of the independent variable. In the context of vector 

calculus generally, this matrix is commonly called the Jacobian matrix. 

3. Find the determinant (sometimes called the Jacobian) of this matrix. 

4. Determine the values of the independent variable that will maximize the absolute value of this 

determinant. This is equivalent to maximizing the square of the determinant, but it is commonly 

easier to maximize its absolute value. 

The following illustrations may be helpful. 

Statistically Linear Systems (Illustrated by a Second-order Polynomial – 

three parameters) 
A second-order polynomial is a statistically linear model, meaning that the derivatives of the model with 

respect to its parameters are all independent of the values of the parameters. Assuming the 

independent variable is temperature, designated by 𝑇, we have 

𝑦 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 

This model has three parameters, a, b and c. Therefore, the optimal design of the experiment will 

involve measurements at three values of 𝑇. The F. matrix for this model, assuming three data points, is  

[
 
 
 
 
 
 
𝜕𝑦

𝜕𝑎
|
𝑇1

𝜕𝑦

𝜕𝑏
|
𝑇1

𝜕𝑦

𝜕𝑐
|
𝑇1

𝜕𝑦

𝜕𝑎
|
𝑇2

𝜕𝑦

𝜕𝑏
|
𝑇2

𝜕𝑦

𝜕𝑐
|
𝑇2

𝜕𝑦

𝜕𝑎
|
𝑇3

𝜕𝑦

𝜕𝑏
|
𝑇3

𝜕𝑦

𝜕𝑐
|
𝑇3]

 
 
 
 
 
 

= [

1 𝑇1 𝑇1
2

1 𝑇2 𝑇2
2

1 𝑇3 𝑇3
2

] 

The determinant of which is 

−(𝑇1 − 𝑇2)(𝑇1 − 𝑇3)(𝑇2 − 𝑇3) 

We can assume, without loss of generality, that 𝑇1 and 𝑇3 represent the lowest and highest achievable 

temperatures, respectively. These represent the lowest and highest temperatures at which data can be 

collected without compromising its accuracy, changing the system response so the model is not longer 

valid, or expending excessive resources. This function (as all similar polynomial functions) increases or 

decreases without limit as the values of these temperatures change (with the other two remaining 



constant). Therefore, the lowest and highest data points should be at the lowest and highest achievable 

temperatures. The remaining data point should be located where 

−
𝑑(𝑇1 − 𝑇2)(𝑇1 − 𝑇3)(𝑇2 − 𝑇3)

𝑑 𝑇2
= 0 = (−𝑇1 + 𝑇2)(𝑇1 − 𝑇3) + (𝑇1 − 𝑇3)(𝑇2 − 𝑇3) 

and 

−
𝑑2(𝑇1 − 𝑇2)(𝑇1 − 𝑇3)(𝑇2 − 𝑇3)

𝑑 𝑇2
< 0 

This is at the point  

𝑇2 =
1

2
(𝑇1 + 𝑇3) 

where the second derivative is 

2(𝑇1 − 𝑇3) 

which would always be negative under the assumption that 𝑇3 > 𝑇1 and hence always be a maximum. 

Since we are looking for a maximum in the absolute value, it is not equally valid show that it is always a 

minimum. The most important thing is that the value can never be zero, which would correspond to an 

inflection point and would produce a minimum rather than a maximum in absolute value.  

Therefore, data should be evenly distributed over these three points to minimize the uncertainty in the 

parameters. Note that, for this linear function in a statistical sense, the magnitude of the determinant 

and hence of the points to make the measurements does not depend on the value of the parameters, as 

would be expected. This result is also general in the sense that statistically linear polynomial functions 

generally lead to optimal experimental designs in which the data are collected at equally spaced data 

points, one point per parameter in the polynomial, with the upper and lower limits and the 

experimental upper and lower limits of the system. 

Nonlinear systems are very different, as indicated below. 

Arrhenius Reactivity Expression (two parameters) 

𝑘 = 𝑘0exp (−
𝐸

𝑅𝑇
) 

The F. matrix for this problem, assuming two data points, is  

[
 
 
 
 
𝜕𝑘

𝜕𝑘0|
𝑇1

 
𝜕𝑘

𝜕𝐸
|
𝑇1

𝜕𝑘

𝜕𝑘0|
𝑇2

𝜕𝑘

𝜕𝐸
|
𝑇2 ]

 
 
 
 

 

yielding the following matrix 



[
 
 
 
 
 
exp (−

𝐸

𝑅𝑇1
) −

𝑘0  exp (−
𝐸

𝑅𝑇1
)

𝑇1

 exp (−
𝐸

𝑅𝑇2
) −

𝑘0  exp (−
𝐸

𝑅𝑇2
)

𝑇2 ]
 
 
 
 
 

 

the determinant of which is 

𝑘0exp [−
𝐸
𝑅

(
1
𝑇1

+
1
𝑇2

)] (𝑇2 − 𝑇1)

𝑇1𝑇2
 

Since the absolute value of this function increases without limit with increasing 𝑇1 or 𝑇2, the maximum 

of the absolute value will occur when one temperature, say 𝑇2, is at its upper bound, designated  𝑇𝑏 

from this point. The other maximum occurs where the derivative with respect to 𝑇1 is zero, namely, 

−

exp [−
𝐸 (

1
𝑇1

+
1
𝑇2

)

𝑅 ]

𝑇1
2 = 0 

or 

𝑇1 =
𝐸𝑇2

𝐸 + 𝑅𝑇2
=

𝐸𝑇𝑏

𝐸 + 𝑅𝑇b
 

The reaction rate coefficient takes on a value of  

𝑘(𝑇2) = 𝑘0exp(−
𝐸

𝑅
𝐸 𝑇𝑏

𝐸 + 𝑅 𝑇𝑏

) = 𝑘0exp(−
𝐸 + 𝑅 𝑇𝑏

𝑅 𝑇𝑏
) = 𝑘0exp(−

𝐸

𝑅 𝑇𝑏
− 1) =

𝑘(𝑇b)

𝑒
 

That is, the temperature at which the reaction rate coefficient decreases by a factor of 
1

𝑒
 from its value 

at the upper limit is the optimal temperature for the second set of data to be collected.  

Note that the optimal design depends on the values of the parameters for this nonlinear expression, as 

is generally the case for nonlinear systems. Since the objective of the experimental design is generally to 

determine these values, this is a little frustrating. However, if the values of the parameters are 

approximately known, or if some preliminary experimentation can lead to reasonable approximates, the 

design provides useful guidance in selecting the values of the independent variables.  

For a typical reaction (34 kcal/mol activation energy) with an upper temperature limit of 450 K, the 

optimal temperature for the second temperature is 438.5 K – surprisingly close to the upper limit in my 

mind. As the upper temperature limit or activation energy increases, the lower temperature limit also 

increases.  



A plot of how pronounced the maximum is for typical temperatures and activation energies is below 

(specific data are for 34 kcal/mol activation energy and an upper temperature bound of 450 K).  

 

Figure 3 Curve shape of the determinant assuming one experimental value is fixed at its experimental upper bound of 450.  

The curve maximizes about 2 % below the point it drops to zero (438.5 K in this case) and drops rapidly 

as temperature increases and more slowly as temperature decreases. Intuition suggests this trend is 

correct, since one cannot determine parameters if the two temperatures are equal, but the proximity of 

the maximum in the curve to the peak temperature is not intuitive (to this author). Since the precise 

activation energy is not generally known at the point the experiment is being designed, it may be 

prudent to be slightly conservative in estimating the optimal temperature (choose a point slightly lower 

than the computed optimal point). 

Power Law Correlation 
A power law expression such as 

𝑦 = 𝑎𝑥𝑏 

provides a correlation for many expressions. The F-matrix for this experimental design is as follows 

[
 
 
 
 
𝜕𝑦

𝜕a
|
𝑥1

 
𝜕𝑦

𝜕a
|
𝑥2

𝜕𝑦

𝜕𝑏
|
𝑥1

𝜕𝑦

𝜕𝑏
|
𝑥2 ]

 
 
 
 

= [
𝑥1

𝑏 𝑥2
𝑏

𝑎𝑥1
𝑏 ln 𝑥1 𝑎𝑥2

𝑏 ln 𝑥2

] 

with a resulting determinant of  

𝑎𝑥1
𝑏𝑥2

𝑏(ln 𝑥2 − ln𝑥1) 

If we assume 𝑥2 is larger than 𝑥1, which does not reduce the generality of the approach, the above 

function clearly increases without bound with increasing 𝑥2 if 𝑏 is not negative. For negative 𝑏, the 
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function tends to zero with increasing 𝑥2 while it decreases without bound in decreasing 𝑥1. Therefore, 

one of the two measurement points should be at the highest achievable value of 𝑥 if 𝑏 is positive or at 

the lowest achievable value of 𝑥 if 𝑏 is negative. The second value is where the derivative of the above 

function is zero, which is given by 

𝑥1 = 𝑥𝑏 exp (−
1

𝑏
) 𝑏 > 0

𝑥2 = 𝑥𝑏 exp (−
1

𝑏
) 𝑏 < 0

 

where 𝑥𝑏 is the value bound by the experimental conditions as discussed above. 

Lorentzian Function 
The preceding two examples were only nonlinear in one parameter even though they involved two 

parameters. The Lorentzian function describes many physical and stochastic processes and is nonlinear 

in both of its two parameters. It appears in many forms, but here we will use the simple form below 

𝑦 =
1

1 +
(𝑥 − 𝑎)

𝑏2

2 

This function describes a bell-shaped curve centered at 𝑎 and with a characteristic width of 𝑏 (Figure 4). 

This function is the solution to a partial differential equation describing constrained resonance, as in, for 

example, homogeneously broadened line shapes of molecular emission and absorption spectra or 

resonances in nuclear cross sections and other profiles. The line shape does not account for relativistic 

effects in these applications. This function is also probability distribution function if normalized by 𝑎𝑏 in 

which context it is generally called a Cauchy or a Cauchy-Lorentz distribution. It is also a commonly used 

empirical function for systems that have characteristic peaks with monotonically declining values at 

either side of the peak. 
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Figure 4 Shape of a Lorentzian function with 𝒂 = 𝟎 and 𝒃 = 𝟏.  

The F-matrix for this expression is 

[
 
 
 
 
𝜕𝑦

𝜕a
|
𝑥1

 
𝜕𝑦

𝜕a
|
𝑥2

𝜕𝑦

𝜕𝑏
|
𝑥1

𝜕𝑦

𝜕𝑏
|
𝑥2 ]

 
 
 
 

=

[
 
 
 
 
 

2(−𝑎 + 𝑥1)

𝑏2(1 +
(−𝑎 + 𝑥1)

2

𝑏2 )2

2(−𝑎 + 𝑥1)
2

𝑏3(1 +
(−𝑎 + 𝑥1)

2

𝑏2 )2

2(−𝑎 + 𝑥2)

𝑏2(1 +
(−𝑎 + 𝑥2)

2

𝑏2 )2

2(−𝑎 + 𝑥2)
2

𝑏3(1 +
(−𝑎 + 𝑥2)

2

𝑏2 )2
]
 
 
 
 
 

 

The determinant of this matrix is 

−
4𝑏3(𝑎 − 𝑥1)(𝑎 − 𝑥2)(𝑥1 − 𝑥2)

(𝑏2 + (𝑎 − 𝑥1)
2)2(𝑏2 + (𝑎 − 𝑥2)

2)2
 

Unlike the previous examples, this function does not increase or decrease without bound as the values 

of 𝑥1 and 𝑥2 increase or decrease and, in fact, the function tends to zero for all finite values of the 

parameters 𝑎 and 𝑏 as 𝑥1 and 𝑥2 tend to ±∞, as one would expect since the denominator involves 

higher powers of 𝑥1 and 𝑥2 than the numerator. Therefore, unlike the previous examples, the optimum 

values of 𝑥1 and 𝑥2 at which to collect data will be bounded by theory. If these bounds are 

experimentally achievable, there will be no experimentally dictated upper or lower limits as was the 

case with the earlier examples.  

The derivatives of this determinant with respect to the values 𝑥1 and 𝑥2 are 

−
4𝑏3(𝑎 − 𝑥2){𝑎

3 + 𝑎[𝑏2 − 3𝑥1(𝑥1 − 2𝑥2)] + 𝑥1
2(2𝑥1 − 3𝑥2) − 3𝑎2𝑥2 + 𝑏2(−2𝑥1 + 𝑥2)}

[𝑏2 + (𝑎 − 𝑥1)
2]3[𝑏2 + (𝑎 − 𝑥2)

2]2
 

and 

4𝑏3(𝑎 − 𝑥1)[𝑎
3 + 𝑎𝑏2 − 3𝑎2𝑥1 + 𝑏2𝑥1 − 2(𝑏2 − 3𝑎𝑥1)𝑥2 − 3(𝑎 + 𝑥1)𝑥2

2 + 2𝑥2
3]

[𝑏2 + (𝑎 − 𝑥1)
2]2[𝑏2 + (𝑎 − 𝑥2)

2]3
 

respectively.  

Setting these to zero is and solving for 𝑥1 and 𝑥2 yields a total of nine solutions or roots since 𝑥1 and 𝑥2 

appear in the expressions at powers up to nine. Three of these are repeated roots where 𝑥1 and 𝑥2 both 

equal 𝑎, which represents a minimum in the absolute value of the determinant rather than a maximum. 

Two of the maxima are at 

𝑥1 = 𝑎 ± √
3

5
𝑏, 𝑥2 = 𝑎 ∓ √

3

5
𝑏 

and the remaining four are at 

𝑥1 = 𝑎 ±
1

2
√7 + √33

2
√𝑏2,   𝑥2 = 𝑎 ±

1

2
√7 − √33

2
√𝑏2 



and 

𝑥1 = 𝑎 ±
6(3√3 + 7√11)

(15 + √33)
2

√𝑏2,    𝑥2 = 𝑎 ±
1

2
√

7 + √33

2
√𝑏2 

Since we do not know if 𝑏 is positive or negative, we cannot write √𝑏2 = 𝑏 (√𝑏2 = −𝑏 if 𝑏 is negative). 

The second form is approximately 

𝑥1 =  𝑎 + 0.396143 √𝑏2, 𝑥2 =  𝑎 + 1.26217 √𝑏2 

Contour and surface plots of the determinant are often the best ways to distinguish global from local 

maxima. The plots appear below assuming 𝑎 = 0 and 𝑏 = 1. Characteristic of all determinants of this 

type, the plots are symmetric about the line 𝑥1 = 𝑥2, which reflects the idea that 𝑥1 and 𝑥2 are 

interchangeable, and it is arbitrary which is considered larger/smaller. For this reason, it does not matter 

how the axes are labeled, and they are unlabeled here. Additionally, the value of the determinant is zero 

for 𝑥1 = 𝑥2, again characteristic of all determinants of this type, indicating that you can gain no 

information about either parameter if data are not available at two unique values of the independent 

variable.  

In terms of properties unique to this function and not characteristic of all determinants of this type, the 

six local maxima and the minimum at the triply repeated root at 𝑥1 and 𝑥2 equal to 𝑎 are all evident in 

the plot, although the height of the peak of the highest maxima has been truncated to make the other 

peaks more visible. Clearly, the two peaks at 𝑥1 = 𝑎 ± √
3

5
𝑏, 𝑥2 = 𝑎 ∓ √

3

5
𝑏 are much greater maxima 

than the other four and are the optimal choices for this experimental design. Although these are two 

peaks, they represent a single set of independent variable values, namely, values offset equidistant from 

the value of 𝑎 by a distance √
3

5
𝑏.  

 



 

  

Figure 5 Surface (left) and contour (right) plots of the determinant of the Lorentzian function with 𝒂 = 𝟎 and 𝒃 = 𝟏 

 



A superficial experimental design for this system based on an inspection of Figure 4 might suggest that 

the peak of the curve is a good choice for one of the values of the independent variables, with the 

second located perhaps half way up the peak. An examination of the surface/contour plots reveals that 

the location x =  𝑎 is an especially poor choice for conducting experiments since the value of the 

determinant is near zero at this point for all values of the second point. This highlights one of the 

advantages of careful experimental design. Unlike many of the previous examples, the peaks in the 

these curves are relatively narrow, indicating that the uncertainty in the parameters increases rapidly as 

the experimental data points shift from the local optimum, especially if the shift is toward the value 𝑎. If 

the true value of 𝑎 is unknown, as would be almost always the case, the curve suggests the best design 

is to perturb one of the experimental points away from 𝑎. Note that perturbing them both equal 

distances from the estimated values of 𝑎 is less advantageous than perturbing only one of them if the 

estimated value of 𝑎 is equal to or larger than the actual value.  

The relative values of the local maxima depend on the values of the parameters chosen, and it is 

conceivable that the other roots could become the global maxima. This does not happen in this 

particular case. Changing the value of 𝑎 shifts the center of the symmetric plot along the 𝑥1 = 𝑥2 

symmetry line but otherwise does not change it. Changing the value of 𝑏 stretches the plot along 

uniformly perpendicular to the 𝑥1 = 𝑥2 symmetry line, but does not change the identification of the 

global maxima.  

First-order Generation/Decay Kinetics 
Consider the equation used in the introduction of this section, 𝑦 = 𝛽[1 − exp(−𝛾𝑥)], which also has a 

single nonlinear parameter. Applying the same techniques to this function leads to the following matrix, 

[
 
 
 
 
𝜕𝑦

𝜕𝛽
|
𝑥1

 
𝜕𝑦

𝜕𝛽
|
𝑥2

𝜕𝑦

𝜕𝛾
|
𝑥1

𝜕𝑦

𝜕𝛾
|
𝑥2 ]

 
 
 
 

= [
1 − 𝑒−𝛾𝑥1 𝑒−𝛾𝑥1𝛽𝑥1

1 − 𝑒−𝛾𝑥2 𝑒−𝛾𝑥2𝛽𝑥2
] 

with a determinant of 

−𝑒−𝛾(𝑥1+𝑥2)𝛽((−1 + 𝑒𝛾𝑥2)𝑥1 − (−1 + 𝑒𝛾𝑥1)𝑥2) 

and derivatives with respect to 𝑥1 and 𝑥2 of 

𝑒−𝛾(𝑥1+𝑥2)𝛽(1 − 𝛾𝑥1 + 𝑒𝛾𝑥2(−1 + 𝛾𝑥1) + 𝛾𝑥2) 

and 

−𝑒−𝛾(𝑥1+𝑥2)𝛽(𝛾𝑥1 + (−1 + 𝑒𝛾𝑥1)(−1 + 𝛾𝑥2)) 

respectively. 



If we assume 𝑥1 < 𝑥2, we can tell by inspection that the determinate absolute value increases without 

bound as 𝑥2 increases to infinity. Therefore, 𝑥2 should be as large as possible. Solving either of the 

equations above for 𝑥1 subject to the constraint that 𝑥1 < 𝑥2 yields  

𝑥1 =
1

𝛾
−

𝑥2

−1 + 𝑒𝛾𝑥2
 

We could also solve this problem graphically. The methods illustrated for the Lorentzian function are 

useful here as well. If one plots (or simply evaluates) the determinant at the estimated parameter 

values, the peaks in the absolute value of the determinant are commonly obvious and, while not 

available in analytical form, typically can be discerned with sufficient accuracy for a design. In this case, 

one variable should be as large as possible (though larger than about 5 seems to add little additional 

merit) and the other value should be about 1.  

  

Figure 6 Surface and contour plots of the determinant of the first-order species generation function assuming 𝜷 = 𝜸 = 𝟏. 

 


