
Practical Statistical Analysis

Objectives:

Conceptually understand the following for both linear and 

nonlinear models:

1. Best fit to model parameters

2. Experimental error and its estimate

3. Prediction confidence bands

4. Single-point confidence bands

5. Parameter confidence regions

6. Experimental design



Two typical datasets



Straight-line Regression

Estimate Std Error t-Statistic P-Value

intercept 0.239396 3.3021e-3 72.4977 9.13934e-14

slope -3.264e-4 1.0284e-5 -31.7349 1.50394e-10

Estimate Std Error t-Statistic P-Value

intercept 0.241001 1.733e-4 139.041 3.6504e-10

slope -3.214e-4 5.525e-6 -58.1739 2.8398e-8



ANOVA and Conf. Int. Tables

DF SS MS F-Statistic P-Value

x 1 2.8515e-4 2.8515e-4 1007.1 1.50394e-10

Error 9 2.5483e-6 2.83142e-7

Total 10 2.8770e-4

DF SS MS F-Statistic P-Value

x 1 2.89221e-4 2.89221e-4 3384.21 2.8398e-8

Error 5 4.27311e-7 8.54621e-8

Total 6 2.89649e-4

Estimate Standard Error Confidence Interval

intercept 0.239396 0.00330212 {0.231926,0.246866}

slope -3.26366e-4 1.02841e-5 {-3.49631e-4,-3.03102e-4}

Estimate Standard Error Confidence Interval

intercept 0.241001 0.00173331 {0.236545,0.245457}

slope -3.2139e-4 5.52469e-6 {-3.35595e-4,-3.07191e-4}



Prediction Bands

95% confidence interval for 

the correct line



Propagation of Error
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Rigorous vs. Propagation of Error
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Single-Point Prediction Bands

95% confidence interval for 

where the data should lie



Point and Mean Prediction Bands

Inside band: 95% confidence 

interval for the correct line

Outside band: 95% confidence 

interval for the data range



Confidence Interval Ranges



Joint Confidence Region

95% joint confidence region for 

both slope and intercept



Regions and Intervals Compared

Joint region in this case is 0.952 or 90.25 %



Single-Point Prediction Band



Residual SP Prediction Band (95%)



Joint Confidence Region

linearized result

correct (unknown) result

nonlinear result



Joint Confidence Regions

linearized result

nonlinear result



Nonlinear SCR More Complex

𝑦 =
1

1 +
𝑥 − 𝑎
𝑏2

2

The Cauchy or 

Lorentz equation 

(is a probability 

density function 

and describes 

some laser line 

widths).

Nonlinear parameter simultaneous 

confidence region(s) are defined 

in general by the equation

𝑆 𝜃 − 𝑆 መ𝜃

𝑆 መ𝜃
=

𝑝

𝑛 − 𝑝
𝐹𝑝,𝑛−𝑝,1−𝛼

In this case, 

there are 4 noncontiguous regions.



Example

Point No. 𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 𝜖𝑖
1 0.1 0.0638 0.1 0.0638 0.954 0.5833 0.03150

2 0.2 0.1870 0.6 0.4569 0.954 0.6203 -0.00550

3 0.3 0.2495 1.1 0.6574 0.954 0.6049 0.00990

4 0.4 0.3207 1.6 0.7891 0.954 0.6056 0.00920

5 0.5 0.3356 2.1 0.8197 0.954 0.5567 0.05810

6 0.6 0.5040 2.6 0.9786 4.605 1.0428 -0.05280

7 0.7 0.5030 3.1 0.9545 4.605 0.9896 0.00040

8 0.8 0.6421 3.6 1.0461 4.605 1.0634 -0.07340

9 0.9 0.6412 4.1 1.0312 4.605 1.0377 -0.04770

10 1.0 0.5678 4.6 0.9256 4.605 0.9257 0.06430

Compare 3 different design, each 

with the same number of data points 

and the same errors



SCR Results for 3 Cases

10 points equally spaced 

where Y changes fastest (0-1)

10 equally spaced points 

between 0 and 4.6

Optimal design (5 pts 

at 0.95 and 5 pts at 

4.6)



Prediction and SP Conf. Intervals

Optimal design (blue) improves predictions everywhere. Recall 

data for optimal design regression were all at two points, 0.95 

and 4.6.



Improved Prediction & SP Intervals

Optimal design (blue) improves 

predictions everywhere, including 

extrapolated regions. Recall data 

for optimal design regression were 

all at two points, 0.95 and 4.6.



Linear vs. Nonlinear Models

• Linear and nonlinear refer to the coefficients, not the 

forms of the independent variable.

• The derivative of a linear model with respect to a 

parameter does not depend on any parameters.

• The derivative of a nonlinear model with respect to a 

parameter depends on one or more of the parameters.



Linear vs. Nonlinear Models

Nonlinear Models
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Linear Models
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LS with data, not transformed data
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Best estimates of model parameters

Parameter joint confidence region

𝑝 = number of parameters, 𝑛 = number of points, 𝐹 = F-distribution



Recommendations

• Minimize to sum of squares of differences between 

measurements and model written in term of what you 

measured.

• DO NOT linearize the model, i.e., make it look 

something like a straight line model.

• Confidence intervals for parameters can be misleading.

• Joint/simultaneous confidence regions are much more 

reliable. 

• Propagation of error formula grossly overestimates 

error

• Compute joint/simultaneous confidence regions from 

𝑆 𝜃 − 𝑆 ෠𝜃

𝑆 ෠𝜃
≤

𝑝

𝑛 − 𝑝
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Typical Data
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Kinetic Data Analysis
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data 

k = 1.0e13exp(-35000/(1.9872*T))+noise (10% sd)
T k 1/T ln(k)
550  0.0795571 0.00181818 -2.53128      
575  0.52429 0.00173913 -0.64571
600 1.82548 0.00166667  0.601844
 

fit of ln(k) vs 1/T
a = 35.233 ± 3.33 -> A = 2.0e15 (7.166e13 - 5.59e16)
b = -20727 ± 1.91e+03 -> E = 41.2 kcal/mol (37.4-45.0)
 

first two (high-temperature) points
a = 29.295 -> A = 5.28e12
b = -17216 -> E = 34.211
 
 



Kinetic Data Analysis
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 experimental data
 traditional fit (LLS of ln(k) vs 1/T)
Sum of Squares = 0.0279806
 two-point fit of data
Sum of Squares = 0.00301761



Graphical Summary

• The linear and non-linear 

analyses are compared to the 

original data both as k vs. T 

and as ln(k) vs. 1/T.

• As seen in the upper graph, 

the linearized analysis fits the 

low-temperature data well, at 

the cost of poorer fits of high 

temperature results. The non-

linear analysis does a more 

uniform job of distributing the 

lack of fit.

• As seen in the lower graph, 

the linearized analysis evenly 

distributes errors in log space
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 non-linear least squares
A = 1.45e13
E = 35.4  kcal/mol
 

data 

k = 1.0e13exp(-35000/(1.9872*T))+noise(10% sd)
  T k  1/T ln(k)
550 0.0795571 0.00181818 -2.53128      
575 0.52429 0.00173913 -0.64571
600 1.82548 0.00166667   0.601844
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 experimental data

 traditional fit (LLS of ln(k) vs 1/T)
A = 2.0e15
E = 41.2 kcal/mol 
Sum of Squares = 0.0279806

 
 non-linear least-squares fit
A = 3.038e13
E = 36.3  kcal/mol
Sum of Squares = 0.002776

 



A practical Illustration



Extension



Typical Data



Parameter Estimates

• Best estimate of parameters for a given set of data. 

• Linear Equations

• Explicit equations

• Requires no initial guess

• Depends only on measured values of dependent and independent 

variables

• Does not depend on values of any other parameters

• Nonlinear Equations

• Implicit equations

• Requires initial guess

• Convergence often difficult

• Depends on data and on parameters



Parameter Estimates

Nonlinear estimate (blue) is closer to the 

correct value (black) than the linearized 

estimate (red). Blue line represents 

parameter 95% confidence region. It is 

possible that linear analysis could be 

closer to correct answer with any 

random set of data, but this would be 

fortuitous.



For Parameter Estimates

• In all cases, linear and nonlinear, fit what you measure, 

or more specifically the data that have normally 

distributed errors, rather than some transformation of 

this. Any nonlinear transformation (something other 

than adding or multiplying by a constant) changes the 

error distribution and invalidates much of the statistical 

theory behind the analysis.  

• Standard packages are widely available for linear 

equations.

• Nonlinear analyses should be done on raw data (or 

data with normally distributed errors) and will require 

iteration, which Excel and other programs can handle. 



Experimental Error

• The inherent error in the data figures prominently into almost all 

analyses except the best estimates of the parameters.

• The classical assumptions are that these errors are additive, 

normally distributed with a mean of 0 and constant variance 

(independent of the value of the dependent and independent 

variables and of time), and independent. 

• None of these assumptions is always true.

• Errors could be multiplicative with mean of 1, but this is equivalent to 

additive with mean 0 but proportional to the predicted value. Could 

have other forms. 

• Errors may be non-normally distributed, but the Central Limit Theorem 

provides reasonably strong motivation for them being normally 

distributed in many cases.

• Errors often depend on each other, especially when data come from 

computerized acquisition systems at high rates. 



Experimental Error

• The most robust method of estimating experimental error is by 

replicating measurements at every value of the independent 

variable(s) and each combination of independent variable(s). This 

is commonly not practical. 𝒔 ෝ𝒚𝒊 𝒆
𝟐 =

σ𝒊=𝟎
𝒓 𝒚𝒊−ෝ𝒚𝒊

𝟐

𝒓−𝟏
where 𝒓 is number of 

replicates.

• The mean difference between the predicted and measured values 

provides and estimate of experimental error even with no data 

replicates if the model is statistically correct (capable of 

describing every actual trend in the data) and the error 

assumptions are correct (independent, constant variance, 

additive) according to 𝒔𝒆
𝟐 =

σ𝒊=𝟎
𝒏 𝒚𝒊−ෝ𝒚𝒊

𝟐

𝒏−𝒑
where 𝒏is number of data 

points and 𝒑 is number of parameters.

• In the previous example, the nonlinear and linear error estimates 

are 1.07 and 1.09, respectively. That is, the models estimate that 

the standard deviation in the normal distribution that describes the 

errors is about 1.08.



Population vs Sample Statistics

There are two common definitions of a standard deviation that 

sometimes lead to confusion.

𝒔𝟐 =
σ𝒊=𝟎
𝒏 𝒚𝒊 − ෝ𝒚𝒊

𝟐

𝒏 − 𝟏
is the sample estimate. That is, it is the estimated standard deviation 

based on a sample set of data drawn from a usually much larger 

population when the mean is also based on this sample set of data. 

Excel functions STDEV() and STDEV.S() return this value for a list of 

data.

𝒔𝟐 =
σ𝒊=𝟎
𝒏 𝒚𝒊 − ෝ𝒚𝒊

𝟐

𝒏
is the population estimate. That is, it is the standard deviation based 

on the entire population or based on a sample when the mean is 

known or estimated from some independent source. Excel functions 

STDEVP() and STDEV.P() return this value for a list of data.



Confidence Intervals



Two typical datasets
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Straight-line Regression
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Estimate Std Error t-Statistic P-Value

intercept 0.239396 3.3021e-3 72.4977 9.13934e-14

slope -3.264e-4 1.0284e-5 -31.7349 1.50394e-10

Estimate Std Error t-Statistic P-Value

intercept 0.241001 1.733e-4 139.041 3.6504e-10

slope -3.214e-4 5.525e-6 -58.1739 2.8398e-8



Mean Prediction Bands



Single-Point Prediction Bands



Point and Mean Prediction Bands



Rigorous vs. Propagation of Error
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Propagation of Error
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Single-Point Prediction Band



Residual SP Prediction Band (95%)



Confidence Region

linearized result

correct (unknown) result

nonlinear result



Joint Confidence Regions

linearized result

nonlinear result



Prediction Band Characteristics

• Straight Line

• Form hyperbolae with waist (minimum) at ഥ𝒙.

• Band range at a given 𝒙 increases monotonically and without 

bound as 𝒙 → ±∞.

• Mean Prediction Band

• Individual points commonly lie outside the range

• The range of the mean prediction band goes to 0 as 𝒏 → ∞.

• Single-point Prediction Band

• Individual points rarely lie outside the band (5% of the time for a 

95% band).

• The range of the single-point prediction band is finite as 𝒏 → ∞.

• Becomes the mean prediction band as the number of additional 

points approaches ∞.



Prediction Band Characteristics

• Linear Equations (not necessarily straight line)

• Waist or multiple waists (minima) in range of data.

• Band range at a given 𝒙 increases non-monotonically and 

without bound as 𝒙 → ±∞.

• Mean Prediction Band

• Individual points commonly lie outside the range

• The range of the mean prediction band goes to 0 as 𝒏 → ∞.

• Single-point Prediction Band

• Individual points rarely lie outside the band (5% of the time for a 

95% band).

• The range of the single-point prediction band is finite as 𝒏 → ∞.

• Becomes the mean prediction band as the number of additional 

points approaches ∞.



Nonlinear Equations

• Nonlinear Equations

• Minimum waist can and commonly does occur outside range of 

measured data.

• Band range at a given 𝒙 increases non-monotonically and 

frequently is bounded on at least one side as 𝒙 → ±∞.

• Mean Prediction Band

• Individual points commonly lie outside the range

• The range of the mean prediction band goes to 0 as 𝒏 → ∞.

• Single-point Prediction Band

• Individual points rarely lie outside the band (5% of the time for a 

95% band).

• The range of the single-point prediction band is finite as 𝒏 → ∞.

• Becomes the mean prediction band as the number of additional 

points approaches ∞.



Parameter Characteristics

• Linear models

• Parameters are explicit functions of data – do not depend on 

themselves.

• Parameters require no iteration to compute.

• Normal equations are independent of parameters.

• Nonlinear models

• Parameters depend on themselves – need an estimate to begin 

iterative computation

• Parameters generally determined by converging and 

optimization problem, not by explicit computation.

• Optimization problem commonly quite difficult to converge.



ANOVA and Conf. Int. Tables

DF SS MS F-Statistic P-Value

x 1 2.8515e-4 2.8515e-4 1007.1 1.50394e-10

Error 9 2.5483e-6 2.83142e-7

Total 10 2.8770e-4

DF SS MS F-Statistic P-Value

x 1 2.89221e-4 2.89221e-4 3384.21 2.8398e-8

Error 5 4.27311e-7 8.54621e-8

Total 6 2.89649e-4

Estimate Standard Error Confidence Interval

intercept 0.239396 0.00330212 {0.231926,0.246866}

slope -3.26366e-4 1.02841e-5 {-3.49631e-4,-3.03102e-4}

Estimate Standard Error Confidence Interval

intercept 0.241001 0.00173331 {0.236545,0.245457}

slope -3.2139e-4 5.52469e-6 {-3.35595e-4,-3.07191e-4}



Confidence Interval Ranges



Some Interpretation Traps

• It would be easy, but incorrect, to conclude

• That reasonable estimates of the line can, within 95% 

probability, be computed by any combination of parameters 

within the 95% confidence interval for each parameter

• That experiments that overlap represent the same experimental 

results, within 95% confidence

• That parameters with completely overlapped confidence 

intervals represent essentially indistinguishable results

• If you consider the first graph in this case, all of these 

conclusions seem intuitively incorrect, but 

experimenters commonly draw these types of 

conclusions. 

• Joint or simultaneous confidence regions (SCR) 

address these problems



Simultaneous Confidence Region



Regions and Intervals Compared



Nonlinear SCR More Complex

𝑦 =
1

1 +
𝑥 − 𝑎
𝑏2

2

The Cauchy or 

Lorentz equation 

(is a probability 

density function 

and describes 

some laser line 

widths).

Nonlinear parameter simultaneous 

confidence region(s) are defined 

in general by the equation

𝑆 𝜃 − 𝑆 መ𝜃

𝑆 መ𝜃
=

𝑝

𝑛 − 𝑝
𝐹𝑝,𝑛−𝑝,1−𝛼

In this case, 

there are 4 noncontiguous regions.



Sim. or Joint Conf. Regions

𝑆 𝜃 − 𝑆 መ𝜃

𝑆 መ𝜃
≤

𝑝

𝑛 − 𝑝
𝐹𝑝,𝑛−𝑝,1−𝛼

𝑆 𝜃 is the sum square errors as a function of the 

parameters, represented by the vector 𝜃. This is a function 

that depends on the parameter values.

𝑆 ෠𝜃 is 𝑆 𝜃 evaluated at the optimum parameters, 

represented by ෠𝜃. This is a number, not a function. 

𝑝 is the number of parameters (a number).

𝑛 is the number of data points (a number).

𝐹𝑝,𝑛−𝑝,1−𝛼is the critical value of the F distribution with 𝑝

and 𝑛 − 𝑝 degrees of freedom and at confidence level 𝛼
(a number)

Region defined by



Simultaneous Confidence Regions

• Overlapping confidence intervals is a poor test for 

difference in data sets.

• Data that may appear to be similar based on confidence 

intervals may in fact be quite different and certainly 

distinct from one another.

• Parameters in the lonely corners of interval unions are 

exceptionally poor estimates.



Confidence Region Characteristics

• Linear Equations

• Always form 𝒑-dimensional ellipsoids, where 𝒑 is the number of 

parameters.

• Parameters are generally linearly correlated (ellipsoid axes are 

not aligned with parameter axes). 

• Not correlated for straight line if ഥ𝒙 = 𝟎.

• Constant and quadratic parameters always correlated for quadratic

• Parameter uncertainty is usually much smaller than confidence 

interval at given values of other parameters.

• Parameter uncertainty range slightly exceeds conf. interval 

range.



Confidence Region Characteristics

• Nonlinear Equations

• Regions assume many shapes and may not be contiguous.

• Parameters generally correlated, but not linearly correlated.

• Parameter uncertainty usually much smaller than confidence 

interval at given values of other parameters.

• Parameter uncertainty range exceeds conf. interval range and 

may not be bounded.



Experimental Design

• In this context, experimental design means selecting 

the conditions that will maximize the accuracy of your 

model for a fixed number of experiments.

• There are many experimental designs, depending on 

whether you want to maximize accuracy of prediction 

band, all parameters simultaneously, a subset of the 

parameters, etc.

• The d-optimal design maximizes the accuracy of all 

parameters and is quite close to best designs for other 

criteria. It is, therefore, by far the most widely used.



Fit vs. Parameter Precision

y

x

Generally there is a compromise between minimizing 

parameter variance and validating the model.

Four ways of using 

16 experiments

Design 1 2 3 4

Lack of 

fit df

0 2 2 14

Pure 

error df

14 12 12 0

𝑠𝑑 𝑏1
𝜎

0.25 0.28 0.34 0.41

P sites 2 4 4 16

1

2

3

4



Typical (nonlinear) Application

𝑦 = 𝛽 1 − exp −𝛾𝑥



Example

Point No. 𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 𝜖𝑖
1 0.1 0.0638 0.1 0.0638 0.954 0.5833 0.03150

2 0.2 0.1870 0.6 0.4569 0.954 0.6203 -0.00550

3 0.3 0.2495 1.1 0.6574 0.954 0.6049 0.00990

4 0.4 0.3207 1.6 0.7891 0.954 0.6056 0.00920

5 0.5 0.3356 2.1 0.8197 0.954 0.5567 0.05810

6 0.6 0.5040 2.6 0.9786 4.605 1.0428 -0.05280

7 0.7 0.5030 3.1 0.9545 4.605 0.9896 0.00040

8 0.8 0.6421 3.6 1.0461 4.605 1.0634 -0.07340

9 0.9 0.6412 4.1 1.0312 4.605 1.0377 -0.04770

10 1.0 0.5678 4.6 0.9256 4.605 0.9257 0.06430

Compare 3 different design, each 

with the same number of data points 

and the same errors



SCR Results for 3 Cases

10 points equally spaced 

where Y changes fastest (0-1)

10 equally spaced points 

between 0 and 4.6

Optimal design (5 pts 

at 0.95 and 5 pts at 

4.6)



Prediction and SP Conf. Intervals

Optimal design (blue) improves predictions everywhere. Recall 

data for optimal design regression were all at two points, 0.95 

and 4.6.



Improved Prediction & SP Intervals

Optimal design (blue) improves 

predictions everywhere, including 

extrapolated regions. Recall data 

for optimal design regression were 

all at two points, 0.95 and 4.6.



Linear Design Summary

• For linear systems with a possible experimental range 

from x1 to x2

• Straight line – equal number of points at each of two extreme 

points

• Quadratic – extreme points plus middle

• Cubic – extreme points plus points that are located at 

• In general, the optimal points are at the maxima of

• Generally, a few points should be added between two of these 

points to assure goodness of fit.

𝑥1 + 𝑥2
2

±
5

10
𝑥2 − 𝑥1

(equally spaced would be at) 

𝑥1 + 𝑥2
2

±
1

6
𝑥2 − 𝑥1

ෑ
𝑖

𝑝−1

ෑ
𝑗=𝑖+1

𝑝

𝑥𝑖 − 𝑥𝑗
2



Nonlinear Experimental Design

𝐹 =

ቤ
𝜕𝑓

𝜕𝑝1 𝑥1

ቤ
𝜕𝑓

𝜕𝑝2 𝑥1

… อ
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𝜕𝑝𝑝
𝑥1

ቤ
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𝜕𝑝1 𝑥2

ቤ
𝜕𝑓

𝜕𝑝2 𝑥2

… อ
𝜕𝑓

𝜕𝑝𝑝
𝑥2

⋮ ⋮ ⋱ ⋮

ቤ
𝜕𝑓

𝜕𝑝1 𝑥𝑝

ቤ
𝜕𝑓

𝜕𝑝2 𝑥𝑝

⋯ อ
𝜕𝑓

𝜕𝑝𝑝
𝑥𝑝

where 𝑝 is the number of parameters in the model and 𝑥𝑖 are the 

optimal design points

Optimal points (minimum parameter and prediction uncertainty) are at the 

extrema (positive or negative) of the Jacobian matrix determinant with 

respect to the parameters, that is, for a function 𝑓(𝑥), optimal points are at 

the maxima of the determinant of



Nonlinear Design Summary

• Nonlinear design depends on the value of parameters. 

Determining the parameters is usually the objective of 

the design. A bit of a circular (iterative) process. Start 

with reasonable estimates.

• The design can be stated as finding the maxima of 𝑭’𝑭
or the extrema of 𝑭. The latter is simpler math.

• In many but not all cases, one or more extrema will be 

at the highest or lowest achievable value of the 

independent variable.

• There will be at least 𝒑 − 𝟏 inflection points, located at 

𝒙𝒊 = 𝒙𝒋. These are optimally poor (useless), not 

optimally good design points. 

• Frequently, the extrema can only be found numerically 

or graphically, not analytically. 



Analytical and Graphical Solutions



Conclusions

• Statistics is the primary means of inductive logic in the 

technical world. With proper statistics, we can move 

from specific results to general statements with known 

accuracy ranges in the general statements.

• Many aspects of linear statistics are commonly 

misunderstood or misinterpreted.

• Nonlinear statistics is a generalization of linear 

statistics (becomes identical as the model becomes 

more linear) but most of the results and the math are 

more complex.

• Statistics is highly useful in both designing and 

analyzing experiments.


